A Level Statistics Practice Test 2: Data Collection

Instructions:

Answer all questions. Show your working clearly.
Calculators may be used unless stated otherwise.
Draw diagrams where appropriate to illustrate your solutions.
Time allowed: 3 hours

Section A: Data Types and Classification [25 marks]

- 1. [8 marks] Define and distinguish between different types of data:
 - (a) Define primary data and secondary data with examples.
 - (b) Explain the difference between ordinal and nominal data.
 - (c) Define grouped and ungrouped data.
 - (d) Give two examples each of ordinal and nominal qualitative data.
 - 2. [10 marks] Classify the following variables and explain your reasoning:
 - (a) Speed of cars on a motorway
 - (b) Educational qualifications (GCSE, A Level, Degree, Masters)
 - (c) Mobile phone brands
 - (d) Daily rainfall measurements
 - (e) Number of siblings
 - (f) Customer satisfaction ratings (Very Poor, Poor, Average, Good, Excellent)
 - (g) Types of music genres
 - (h) Ages of people to the nearest year
 - (i) Postcode areas
 - (j) Weekly earnings of employees
 - 3. [7 marks] A sports club is conducting research on member fitness levels. They collect:
 - Member's age (in years)
 - Fitness rating (Beginner, Intermediate, Advanced, Elite)
 - Weekly training hours
 - Sport preference

- Monthly membership fee paid
- (a) Classify each variable as qualitative or quantitative.
- (b) For quantitative variables, determine if they are discrete or continuous.
- (c) Suggest the most appropriate data collection method for each variable.

Section B: Advanced Sampling Techniques [30 marks]

- 4. [12 marks] Define and explain advanced sampling concepts:
 - (a) Quota sampling: Describe the method and compare it with stratified sampling.
 - (b) Multi-stage sampling: Explain when this approach is necessary.
 - (c) Snowball sampling: Describe the technique and its applications.
 - (d) Purposive sampling: Explain when this non-probability method is appropriate.
- 5. [18 marks] A university has 15,000 students across 5 faculties: Science (4,500), Arts (3,200), Business (2,800), Engineering (2,500), Medicine (2,000). A study requires 300 students.
 - (a) Design a proportional stratified sample using faculties as strata. Calculate sample sizes.
 - (b) If systematic sampling is used with a starting point of 7, describe the selection process.
 - (c) For cluster sampling using tutorial groups of 25 students each, determine how many clusters to select.
 - (d) Design a quota sampling scheme based on year of study (assuming equal distribution across 4 years).
 - (e) Explain why multi-stage sampling might be necessary for this population.
 - (f) Compare the representativeness of each sampling method for this scenario.

Section C: Data Quality and Survey Design [35 marks]

- 6. [15 marks] Analyze sources of error and bias in data collection:
 - (a) Define measurement error and explain how it affects data quality.
 - (b) Describe interviewer bias and methods to reduce it.
 - (c) Explain leading questions and provide examples.
 - (d) Define recall bias and situations where it commonly occurs.
 - (e) Describe social desirability bias and its impact on survey responses.
 - 7. [20 marks] Evaluate these data collection scenarios for bias and quality issues:

Scenario 1: A survey about exercise habits is conducted via smartphone app, targeting users aged 16-65.

Scenario 2: A market research study about luxury car preferences interviews people at an expensive shopping center.

Scenario 3: A health questionnaire asks: "How many cigarettes do you smoke per day?" with options 0, 1-5, 6-10, 11-20, 21+.

Scenario 4: An education survey is conducted by emailing university students during exam period with a 15

For each scenario:

- (a) Identify potential sources of bias or error.
- (b) Assess the impact on data reliability and validity.
- (c) Suggest specific improvements to enhance data quality.
- (d) Recommend alternative data collection approaches.

Answer Space

Use this space for your working and answers.

Formulae and Key Concepts

Sampling Methods:

Simple Random: Every member has equal chance of selection Systematic: Select every kth member where $k = \frac{N}{n}$ Stratified: $n_i = \frac{N_i}{N} \times n$ (proportional allocation) Cluster: Select entire groups randomly

Data Classification:

Qualitative: Nominal (categories), Ordinal (ranked categories) Quantitative: Discrete (countable), Continuous (measurable) Primary: Collected firsthand, Secondary: Previously collected

Sample Size Considerations:

Larger samples \rightarrow Lower sampling error Cost vs. precision trade-off Diminishing returns beyond certain size

Common Biases:

Selection bias: Non-representative sampling
Response bias: Systematic error in responses
Non-response bias: Differences between responders/non-responders
Measurement bias: Systematic measurement errors
Social desirability bias: Responses to appear favorable

Survey Design Principles:

Clear, unambiguous questions
Avoid leading or loaded questions
Appropriate response scales
Logical question ordering
Pilot testing before full implementation

Data Quality Criteria:

Accuracy: Freedom from error
Precision: Level of detail
Reliability: Consistency of measurement
Validity: Measures what it claims to measure
Completeness: Minimal missing data

END OF TEST

Total marks: 90

For more resources and practice materials, visit: stepupmaths.co.uk