GCSE Higher Mathematics Practice Test 8: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 11^2
 - (b) 6^{-3}
 - (c) 23^0
 - (d) $(-11)^2$
 - (e) $(-6)^3$
 - (f) 15^{-2}
- 2. Write these as single powers:
 - (a) $10^7 \times 10^{12}$
 - (b) $18^{11} \div 18^5$
 - $(c) (7^9)^6$
 - (d) $13^{-2} \times 13^{14}$
 - (e) $\frac{19^{10}}{10^{-9}}$
 - $(f) (11^7)^{-4}$
- 3. Evaluate these fractional indices:
 - (a) $169^{\frac{1}{2}}$
 - (b) $729^{\frac{1}{3}}$
 - (c) $1048576^{\frac{3}{4}}$
 - (d) $1280000000^{\frac{2}{7}}$
 - (e) $4913^{\frac{2}{3}}$
 - (f) $4096^{-\frac{2}{3}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{289}$
 - (b) $\sqrt[3]{1331}$

- (c) $\sqrt[4]{6561}$
- (d) $\sqrt{3.24}$
- (e) $\sqrt[3]{-1000}$
- (f) $\sqrt[5]{248832}$
- 5. Express in index form:
 - (a) $\sqrt{31}$
 - (b) $\sqrt[3]{23}$
 - (c) $\frac{1}{\sqrt{19}}$
 - (d) $\sqrt[4]{j^{17}}$
 - (e) $\frac{1}{\sqrt[3]{k^{13}}}$
 - (f) $\sqrt{j} \times \sqrt[3]{j}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $9^8 \times 9^{-11} \times 9^{12}$
 - (b) $\frac{14^{13} \times 14^{-9}}{14^{-8}}$
 - (c) $(11^6)^{-8} \times 11^{22}$
 - (d) $\frac{15^{-9} \times 15^{19}}{15^8}$
- 7. Evaluate these expressions:
 - (a) $4913^{\frac{2}{3}}$
 - (b) $1048576^{-\frac{3}{4}}$
 - (c) $10000000^{\frac{3}{6}}$
 - (d) $1048576^{-\frac{5}{20}}$
 - (e) $13824^{\frac{1}{3}}$
 - (f) $100000000^{-\frac{3}{7}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{10}{11}} \times x^{\frac{1}{6}}$
 - (b) $\frac{a^{\frac{12}{5}}}{a^{\frac{1}{7}}}$
 - (c) $(k^{\frac{1}{9}})^{18}$
 - (d) $\sqrt{j} \times j^{\frac{1}{10}}$
 - (e) $\frac{\sqrt[3]{b^{13}}}{\sqrt{b}}$
 - (f) $(z^{-\frac{1}{9}})^{-18}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{23} \times 23^9$
 - (b) $\frac{29^7}{\sqrt[3]{29}}$
 - (c) $\sqrt[4]{16^{17}} \times 16^{-\frac{6}{7}}$
 - (d) $\frac{\sqrt{31}}{\sqrt[3]{31^{13}}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{104}$
 - (b) $\sqrt{156}$
 - (c) $\sqrt{171}$
 - (d) $\sqrt{294}$
 - (e) $\sqrt{320}$
 - (f) $\sqrt{1100}$
- 11. Simplify these expressions:
 - (a) $11\sqrt{23} + 17\sqrt{23}$
 - (b) $21\sqrt{9} 9\sqrt{9}$
 - (c) $\sqrt{76} + \sqrt{171}$
 - (d) $\sqrt{294} \sqrt{216}$
 - (e) $9\sqrt{32} + 13\sqrt{72}$
 - (f) $\sqrt{294} \sqrt{176} + \sqrt{50}$
- 12. Multiply and simplify:
 - (a) $\sqrt{15} \times \sqrt{60}$
 - (b) $\sqrt{32} \times \sqrt{128}$
 - (c) $11\sqrt{7} \times 8\sqrt{28}$
 - (d) $\sqrt{22} \times \sqrt{88}$
 - (e) $\sqrt{10} \times \sqrt{40} \times \sqrt{160}$
 - (f) $13\sqrt{9} \times 8\sqrt{36}$
- 13. Expand and simplify:
 - (a) $(9 + \sqrt{19})(6 \sqrt{19})$
 - (b) $(8 + \sqrt{29})(5 + 9\sqrt{29})$
 - (c) $(11 \sqrt{23})^2$
 - (d) $(\sqrt{31} + \sqrt{13})(\sqrt{31} \sqrt{13})$
 - (e) $(9\sqrt{19} + 1)(9\sqrt{19} 1)$
 - (f) $(\sqrt{29} + 9)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{29}}$
 - (b) $\frac{19}{\sqrt{31}}$
 - (c) $\frac{\sqrt{19}}{\sqrt{76}}$
 - (d) $\frac{18}{9\sqrt{2}}$
 - (e) $\frac{1}{8+\sqrt{19}}$
 - (f) $\frac{13}{1-\sqrt{29}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{15}{9+\sqrt{23}}$
 - (b) $\frac{23}{8-\sqrt{37}}$
 - (c) $\frac{\sqrt{19}}{1+\sqrt{19}}$
 - (d) $\frac{9\sqrt{29}}{8+\sqrt{29}}$
 - (e) $\frac{1}{\sqrt{27}-\sqrt{19}}$
 - (f) $\frac{\sqrt{29}+8}{\sqrt{29}-9}$
- 16. Simplify these expressions completely:
 - (a) $\frac{\sqrt{40} + \sqrt{90}}{\sqrt{10}}$
 - (b) $\frac{\sqrt{108} \sqrt{80}}{\sqrt{4}}$
 - (c) $\sqrt{(10+\sqrt{29})(10-\sqrt{29})}$
 - (d) $\sqrt{171} 9\sqrt{19} + \sqrt{112}$
 - (e) $(\sqrt{19} + \sqrt{76})^2$
 - (f) $\frac{\sqrt{156}}{\sqrt{19}} + \frac{\sqrt{114}}{\sqrt{19}}$
- 17. Prove that:
 - (a) $(\sqrt{l} + \sqrt{m})(\sqrt{l} \sqrt{m}) = l m$
 - (b) $\frac{1}{\sqrt{p}+\sqrt{q}} = \frac{\sqrt{p}-\sqrt{q}}{p-q}$
 - (c) $(p+q\sqrt{z})^2 = p^2 + 2pq\sqrt{z} + q^2z$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 1034000
 - (b) 0.000139
 - (c) 8910000000
 - (d) 0.0000000628
 - (e) 1367.2
 - (f) 0.01395
- 19. Write these in ordinary form:
 - (a) 1.19×10^{-1}
 - (b) 9.13×10^{-11}
 - (c) 1.3654×10^{-14}
 - (d) 8.71×10^{17}
 - (e) 1.39×10^{-9}
 - (f) 1.034×10^{12}
- 20. Calculate, giving answers in standard form:

- (a) $(13 \times 10^{11}) \times (15 \times 10^{13})$
- (b) $(9 \times 10^{-9}) \times (17 \times 10^{14})$
- (c) $(27 \times 10^{12}) \div (9 \times 10^{-7})$
- (d) $(24 \times 10^{-11}) \div (16 \times 10^{-14})$
- (e) $(13 \times 10^{10})^2$
- (f) $\sqrt{100 \times 10^{22}}$
- 21. Calculate these more complex expressions:
 - (a) $(9.6 \times 10^{10}) \times (3.75 \times 10^{-12})$
 - (b) $\frac{19.2 \times 10^{13}}{4.8 \times 10^{-10}}$
 - (c) $(10.3 \times 10^{-9}) + (1.17 \times 10^{-8})$
 - (d) $(13.4 \times 10^{12}) (9.7 \times 10^{11})$
 - (e) $\frac{(9.3\times10^8)\times(8.1\times10^{-9})}{(9.3\times10^8)\times(8.1\times10^{-9})}$
 - (f) $(1.1881 \times 10^{20})^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):

 - (a) $\frac{17}{28} + \frac{34}{42}$ (b) $\frac{23}{28} \frac{15}{42}$ (c) $\frac{20}{21} \times \frac{42}{30}$ (d) $\frac{18}{35} \div \frac{27}{45}$ (e) $\frac{15}{16} \frac{11}{24} + \frac{19}{48}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{1}$
 - (b) $0.\overline{73}$
 - (c) $0.8\overline{4}$
 - (d) $0.\overline{714285}$
 - (e) $7.1\overline{6}$
 - (f) $0.73\overline{1}$
- 24. Work out these percentage calculations:
 - (a) Increase 960 by 85%
 - (b) Decrease 1200 by 42%
 - (c) Find 47.5% of 1360
 - (d) What percentage is 189 out of 252?
 - (e) If 105% of a number is 273, find the number
 - (f) A price increases from £150 to £165. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 90% increase, a price is £361. Find the original price
 - (b) After a 85% decrease, a quantity is 162. Find the original quantity
 - (c) The value of a car decreases by 55% each year. If it's worth £6075 now, what was it worth 2 years ago?
 - (d) An investment grows by 13% per year. After 2 years it's worth £2560.07. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $9^{-2} + 15^0 16^{-1}$
 - (b) $\sqrt{121} \times 1331^{\frac{1}{3}} 9^{-2}$
 - (c) $\frac{4913^{\frac{2}{3}}-1048576^{\frac{3}{4}}}{144^{\frac{1}{2}}}$
 - (d) $81^{-\frac{1}{2}} + 144^{\frac{1}{2}} \times 8^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{15}{\sqrt{19}} + \frac{11}{\sqrt{76}}$
 - (b) $\sqrt{72} \times \sqrt{128} \sqrt{288}$
 - (c) $\frac{\sqrt{245} + \sqrt{176}}{\sqrt{49}}$
 - (d) $(9\sqrt{2}-8)^2$
- 28. Work with standard form in context:
 - (a) The mass of a helium atom is 6.646×10^{-27} kg. Find the mass of 6.02×10^{23} helium atoms
 - (b) X-rays travel at 3×10^8 m/s. How far do they travel in one decade (use 1 decade = 3.154×10^8 seconds)?
 - (c) The width of a DNA strand is approximately 2.5×10^{-9} m. How many DNA strands would fit across a distance of 6 mm?
 - (d) A quantum processor handles 5.76×10^{16} operations per second. How many operations in 45 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{19}$ is irrational. (Use proof by contradiction: assume $\sqrt{19} = \frac{w}{z}$ where w and z are integers with no common factors)
- 30. The number ζ satisfies $\zeta^2 = 7\zeta 5$.
 - (a) Show that $\zeta = \frac{7+\sqrt{29}}{2}$
 - (b) Calculate ζ to 4 decimal places
 - (c) Find $\frac{1}{\zeta}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{17}+\sqrt{19}+\sqrt{23}}$. (Hint: First rationalize using $(\sqrt{17}+\sqrt{19})-\sqrt{23}$)
- 32. A rectangle has sides of length $(9+\sqrt{19})$ cm and $(9-\sqrt{19})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of spores nonuples every 14 hours. If there are initially 13×10^2 spores:
 - (a) How many spores after 56 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 1×10^{12} spores?
- 34. Show that $\frac{1}{\sqrt{l+\sqrt{m}}} + \frac{1}{\sqrt{l-\sqrt{m}}} = \frac{2\sqrt{l}}{l-m}$

- 35. A cone has volume $V = \frac{1}{3}\pi r^2 h$. If the volume is $800\pi~{\rm cm}^3$ and $h = 24~{\rm cm}$:
 - (a) Find the radius in surd form
 - (b) Find the slant height (use $l^2 = r^2 + h^2$)
 - (c) Express both answers exactly
- 36. The equation $x^2 18x + 1 = 0$ has solutions $x = 9 \pm 4\sqrt{5}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{9+4\sqrt{5}} + \frac{1}{9-4\sqrt{5}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$