A Level Pure Mathematics Practice Test 1: Exponentials and Logarithms

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Laws of Indices and Exponential Functions

- 1. Simplify these expressions using laws of indices:
 - (a) $2^3 \times 2^5 \times 2^{-2}$
 - (b) $\frac{3^7 \times 3^{-2}}{3^3}$
 - (c) $(5^2)^3 \times 5^{-4}$
 - (d) $\frac{(2^3)^2 \times 2^{-1}}{2^4}$
 - (e) $(3^2 \times 3^{-1})^3$
 - (f) $\frac{4^{2x} \times 4^{x-1}}{4^{3x-2}}$
- 2. Solve these exponential equations:
 - (a) $2^x = 16$
 - (b) $3^{x+1} = 27$
 - (c) $5^{2x-1} = 125$
 - (d) $4^x = \frac{1}{8}$
 - (e) $9^x = 3^{x+4}$
 - (f) $2^{3x} = 4^{x-1}$
- 3. Express in the form a^x where a is a rational number:
 - (a) $(\frac{1}{2})^x \times 4^x$
 - (b) $\frac{8^x}{2^{2x}}$
 - (c) $(27)^{\frac{x}{3}} \times (\frac{1}{3})^x$
 - (d) $\frac{25^x \times 5^{-2x}}{125^{\frac{x}{3}}}$
- 4. Sketch the graphs of these exponential functions, showing key features:
 - (a) $y = 2^x$
 - (b) $y = (\frac{1}{2})^x$
 - (c) $y = 3^x + 1$
 - (d) $y = 2^{x-1}$

- (e) $y = -2^x$
- (f) $y = 2^{-x}$
- 5. For the function $f(x) = e^x$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Describe the behavior as $x \to \infty$ and $x \to -\infty$
 - (d) Find f'(x) and comment on the gradient
 - (e) Sketch the graph, showing the tangent at (0,1)

Section B: Logarithmic Functions and Properties

- 6. Express these in logarithmic form:
 - (a) $2^3 = 8$
 - (b) $10^{-2} = 0.01$
 - (c) $e^x = 7$
 - (d) $5^0 = 1$
 - (e) $3^{-1} = \frac{1}{3}$
 - (f) $a^y = x$
- 7. Express these in exponential form:
 - (a) $\log_2 16 = 4$
 - (b) $\log_{10} 0.1 = -1$
 - (c) $\ln 1 = 0$
 - (d) $\log_5 \frac{1}{25} = -2$
 - (e) $\log_a x = y$
 - (f) $\ln e^3 = 3$
- 8. Evaluate these logarithms without a calculator:
 - (a) $\log_2 8$
 - (b) $\log_3 27$
 - (c) $\log_{10} 1000$
 - (d) $\log_5 \frac{1}{125}$
 - (e) $\log_4 2$
 - (f) $\log_9 3$
- 9. Use the laws of logarithms to simplify:
 - (a) $\log_a 5 + \log_a 3$
 - (b) $\log_a 20 \log_a 4$
 - (c) $3\log_a 2$
 - (d) $\log_a x + 2\log_a y \log_a z$
 - (e) $\frac{1}{2}\log_a 16 + \log_a 3$
 - (f) $\log_a(x^2 9) \log_a(x 3)$ where x > 3
- 10. Sketch the graphs of these logarithmic functions:

- (a) $y = \log_2 x$
- (b) $y = \ln x$
- (c) $y = \log_2 x + 1$
- (d) $y = \log_2(x 1)$
- (e) $y = -\log_2 x$
- (f) $y = \log_2(-x)$ for x < 0

Section C: Solving Logarithmic Equations

- 11. Solve these logarithmic equations:
 - (a) $\log_2 x = 3$
 - (b) $\log_3(x+1) = 2$
 - (c) $\log_{10}(2x-1)=1$
 - (d) $\ln(x-2) = 0$
 - (e) $\log_5(x^2) = 2$
 - (f) $2\log_3 x = 4$
- 12. Solve these equations involving multiple logarithms:
 - (a) $\log_2 x + \log_2 3 = 4$
 - (b) $\log_a 8 \log_a 2 = \log_a x$
 - (c) $\log_3 x + \log_3(x-2) = 1$
 - (d) $\log_{10} x \log_{10} (x 3) = \log_{10} 2$
 - (e) $2\log_5 x = \log_5 9$
 - (f) $\log_2(x+1) + \log_2(x-1) = 3$
- 13. Solve these equations where the base is unknown:
 - (a) $\log_a 16 = 2$
 - (b) $\log_a \frac{1}{8} = -3$
 - (c) $\log_a 27 = \frac{3}{2}$
 - (d) $\log_a 32 = \frac{5}{3}$
- 14. Solve these quadratic logarithmic equations:
 - (a) $(\log_2 x)^2 = 4$
 - (b) $(\log_3 x)^2 3\log_3 x + 2 = 0$
 - (c) $\log^2 x 3\log x + 2 = 0$ (base 10)
 - (d) $(\ln x)^2 5 \ln x + 6 = 0$
- 15. Use the change of base formula to evaluate:
 - (a) $\log_3 7$ in terms of natural logarithms
 - (b) $\log_5 12$ in terms of common logarithms
 - (c) $\log_2 10$ using ln
 - (d) Express $\log_a b \times \log_b c \times \log_c a$

Section D: Combined Exponential and Logarithmic Equations

- 16. Solve these mixed equations:
 - (a) $e^x = 5$
 - (b) $2^x = 10$
 - (c) $3 \times 2^x = 24$
 - (d) $5^{x-1} = 20$
 - (e) $e^{2x} 3e^x + 2 = 0$
 - (f) $2^{2x} 5 \times 2^x + 6 = 0$
- 17. Solve using substitution methods:
 - (a) $4^x 2^{x+1} 8 = 0$ (let $y = 2^x$)
 - (b) $9^x 4 \times 3^x + 3 = 0$ (let $u = 3^x$)
 - (c) $e^{2x} 6e^x + 5 = 0$ (let $t = e^x$)
 - (d) $\log^2 x 3\log x + 2 = 0$ (let $z = \log x$)
- 18. Find the exact solutions:
 - (a) $\ln x + \ln(x 1) = \ln 6$
 - (b) $\log_2 x + \log_4 x = 3$
 - (c) $e^x + e^{-x} = 3$
 - (d) $2 \ln x = \ln(x+6)$
- 19. Solve these equations involving both exponentials and logarithms:
 - (a) $x = \log_2(2^x + 1)$
 - (b) $e^{\ln x} = x + 2$
 - (c) $\ln(e^x 1) = 1$
 - (d) $\log_3(3^x + 8) = x + 1$
- 20. Find the values of x for which:
 - (a) $2^x > 32$
 - (b) $\log_3 x < 2$
 - (c) $e^x \le 10$
 - (d) $\ln x \ge 0$
 - (e) $\log_2(x-1) > 3$
 - (f) $3^{x-1} < \frac{1}{9}$

Section E: Exponential Growth and Decay

- 21. A population grows according to $P = P_0 e^{kt}$ where $P_0 = 1000$ and k = 0.03 per year.
 - (a) Find the population after 5 years
 - (b) How long for the population to double?
 - (c) What is the percentage growth rate per year?
 - (d) Find when the population reaches 2500
 - (e) Calculate the population after 20 years

- 22. A radioactive substance decays according to $A = A_0 e^{-\lambda t}$ where $\lambda = 0.0231$ per year.
 - (a) If initially there are 50g, find the amount after 10 years
 - (b) Calculate the half-life of the substance
 - (c) How long for 90% to decay?
 - (d) What percentage remains after 50 years?
 - (e) Find when only 5g remains
- 23. An investment grows at 6% compound interest per annum.
 - (a) Write the growth formula
 - (b) How long to double the investment?
 - (c) If £5000 is invested, find the value after 8 years
 - (d) How long for the investment to reach £10000?
 - (e) Compare with simple interest at 6% over 10 years
- 24. The temperature of a cooling object follows Newton's law: $T = T_{\text{room}} + (T_0 T_{\text{room}})e^{-kt}$
 - (a) If room temperature is 20°C, initial temperature is 80°C, and k=0.1 per minute, find the temperature after 10 minutes
 - (b) How long for the object to cool to 30°C?
 - (c) Find the temperature after 1 hour
 - (d) What happens as $t \to \infty$?
 - (e) If the object cools to 50°C after 5 minutes, find k
- 25. Carbon-14 dating uses the formula $A = A_0 e^{-0.000121t}$ where t is in years.
 - (a) Calculate the half-life of carbon-14
 - (b) If a sample has 30% of its original carbon-14, find its age
 - (c) How old is a sample with 15% remaining?
 - (d) What percentage remains after 10000 years?
 - (e) Find the age of a sample with ratio 0.85 of living organisms

Section F: Logarithmic Modeling and Applications

- 26. The Richter scale for earthquake magnitude is given by $M = \log_{10}(\frac{I}{I_0})$ where I is intensity.
 - (a) If one earthquake has magnitude 6 and another has magnitude 4, compare their intensities
 - (b) An earthquake has intensity 1000 times the reference level. Find its magnitude
 - (c) How much more intense is a magnitude 8 earthquake than magnitude 6?
 - (d) Find the magnitude of an earthquake with intensity $5 \times 10^7 I_0$
- 27. The pH scale is defined as $pH = -\log_{10}[H^+]$ where $[H^+]$ is hydrogen ion concentration.
 - (a) Find the pH when $[H^+] = 10^{-3} \text{ mol/L}$
 - (b) If pH = 2, find the hydrogen ion concentration
 - (c) Compare the acidity of solutions with pH 3 and pH 5
 - (d) Find the pH when $[H^{+}] = 2.5 \times 10^{-4} \text{ mol/L}$
 - (e) If the concentration doubles, how does the pH change?
- 28. Sound intensity level in decibels is $L = 10 \log_{10}(\frac{I}{I_0})$ where $I_0 = 10^{-12}$ W/m².

- (a) Find the decibel level when $I = 10^{-6} \text{ W/m}^2$
- (b) A sound has level 80 dB. Find its intensity
- (c) How much more intense is 90 dB than 70 dB?
- (d) Find the intensity of a 50 dB sound
- (e) If intensity increases by factor 100, by how much do decibels increase?
- 29. The Michaelis-Menten equation in biochemistry is $v = \frac{V_{\text{max}}[S]}{K_m + |S|}$.
 - (a) Take logarithms to linearize when $[S] >> K_m$
 - (b) If $V_{\text{max}} = 100$, $K_m = 5$, find v when [S] = 10
 - (c) Plot $\log v$ against $\log[S]$ for large [S]
 - (d) Find [S] when $v = \frac{V_{\text{max}}}{2}$
- 30. In information theory, entropy is $H = -\sum p_i \log_2 p_i$.
 - (a) For a fair coin, calculate the entropy
 - (b) For a biased coin with P(H) = 0.7, find the entropy
 - (c) Find the entropy of a fair 6-sided die
 - (d) What probability distribution maximizes entropy for 4 outcomes?

Section G: Advanced Functions and Transformations

- 31. Analyze the function $f(x) = \ln(x-2) + 3$:
 - (a) State the domain and range
 - (b) Find the x and y intercepts
 - (c) Identify any asymptotes
 - (d) Find $f^{-1}(x)$
 - (e) Sketch both f(x) and $f^{-1}(x)$
- 32. For the function $g(x) = e^{2x-1} 4$:
 - (a) Describe the transformations from $y = e^x$
 - (b) State the domain and range
 - (c) Find the horizontal asymptote
 - (d) Solve g(x) = 0
 - (e) Find $g^{-1}(x)$
- 33. Consider $h(x) = \log_2(4 x^2)$:
 - (a) Find the domain of h(x)
 - (b) Determine the range
 - (c) Find the maximum value and where it occurs
 - (d) Solve h(x) = 1
 - (e) Sketch the graph of y = h(x)
- 34. The function $k(x) = ae^{bx} + c$ passes through (0,5), (1,8), and has horizontal asymptote y=2.
 - (a) Find the values of a, b, and c
 - (b) Write the equation of k(x)

- (c) Find k(2)
- (d) Solve k(x) = 10
- (e) Find the domain and range of k(x)
- 35. Investigate the function $m(x) = x \ln x$ for x > 0:
 - (a) Find m'(x) and m''(x)
 - (b) Locate any stationary points
 - (c) Determine the nature of stationary points
 - (d) Find the behavior as $x \to 0^+$ and $x \to \infty$
 - (e) Sketch the graph of y = m(x)

Section H: Systems and Complex Problems

36. Solve these simultaneous equations:

(a)
$$\begin{cases} y = 2^x \\ y = 4 - x \end{cases}$$

(b)
$$\begin{cases} \ln y = 2x \\ y = e^{x+1} \end{cases}$$

(c)
$$\begin{cases} \log_2 x + \log_2 y = 4\\ x - y = 6 \end{cases}$$

(d)
$$\begin{cases} e^x + e^y = 6 \\ e^x - e^y = 2 \end{cases}$$

- 37. Find where these curves intersect:
 - (a) $y = e^x$ and $y = \ln x$
 - (b) $y = 2^x \text{ and } y = x^2$
 - (c) $y = \log x$ and y = 2 x
 - (d) $y = e^{-x}$ and y = x + 1
- 38. Solve these differential equations:
 - (a) $\frac{dy}{dx} = ky$ where $y(0) = y_0$
 - (b) $\frac{dP}{dt} = rP(1 \frac{P}{K})$ (logistic growth)
 - (c) $\frac{dT}{dt} = -k(T T_{\text{env}})$ (Newton's cooling)
 - (d) $\frac{dN}{dt} = -\lambda N$ (radioactive decay)
- 39. A bacteria culture follows logistic growth: $P(t) = \frac{L}{1 + ae^{-kt}}$
 - (a) If L = 1000, P(0) = 50, and P(1) = 100, find a and k
 - (b) Find the population after 5 days
 - (c) When does the population reach 500?
 - (d) Find the maximum growth rate and when it occurs
 - (e) Compare with exponential growth $P = 50e^{rt}$
- 40. The Arrhenius equation in chemistry is $k = Ae^{-E_a/(RT)}$ where k is reaction rate.
 - (a) Take natural logarithms to linearize the equation

- (b) If at temperature 300K, k = 0.01, and at 350K, k = 0.1, find E_a/R
- (c) Find the activation energy if $R = 8.314 \text{ J/(mol \cdot K)}$
- (d) Predict the rate constant at 400K
- (e) At what temperature does the rate double from 300K?

Section I: Advanced Applications and Modeling

- 41. A pharmacokinetic model describes drug concentration: $C(t) = \frac{D}{V}e^{-kt}$ where D is dose, V is volume of distribution, k is elimination rate.
 - (a) If D = 500 mg, V = 40 L, k = 0.1 h⁻¹, find the initial concentration
 - (b) Calculate the concentration after 8 hours
 - (c) Find the half-life of the drug
 - (d) When does concentration drop to 1 mg/L?
 - (e) Model repeated dosing every 12 hours
- 42. Economic growth follows $Y(t) = Y_0 e^{rt}$ where r is the growth rate.
 - (a) If GDP grows at 3% per year, how long to double?
 - (b) A country's GDP is £2 trillion and grows to £2.5 trillion in 5 years. Find the growth rate
 - (c) Compare linear growth $Y = Y_0(1 + rt)$ with exponential over 20 years
 - (d) Find when exponential growth overtakes linear with same initial rate
 - (e) Model with varying growth rate $r(t) = r_0 e^{-\alpha t}$
- 43. The spread of an epidemic follows $I(t) = \frac{N}{1 + (N/I_0 1)e^{-rt}}$ (logistic model).
 - (a) If N = 10000, $I_0 = 10$, r = 0.2 per day, find infections after 10 days
 - (b) When do infections peak?
 - (c) Find the maximum rate of spread
 - (d) Compare with exponential model $I = I_0 e^{rt}$ for early stages
 - (e) Model intervention reducing r by 50% after day 20
- 44. Weber-Fechner law relates stimulus and perception: $P = k \log(S/S_0)$.
 - (a) If doubling stimulus increases perception by 10 units, find k
 - (b) Find perception when stimulus increases 10-fold
 - (c) A sound's loudness follows $L = 10 \log_{10}(I/I_0)$. Compare two sounds differing by 20 dB
 - (d) Model brightness perception where threshold $S_0 = 0.1$ lux
 - (e) Explain why percentage changes matter more than absolute changes
- 45. Design an optimization problem involving exponentials:
 - (a) A company's profit is $P(t) = 1000e^{0.1t} 500t$ over t years
 - (b) Find when profit is maximized
 - (c) Calculate maximum profit
 - (d) Determine break-even points
 - (e) Model with discounting: present value = $\frac{P(t)}{e^{rt}}$
 - (f) Find optimal time to sell considering 5% discount rate

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$