GCSE Higher Mathematics Practice Test 6: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 8^2
 - (b) 2^{-5}
 - (c) 17^0
 - (d) $(-8)^2$
 - (e) $(-7)^3$
 - (f) 10^{-2}
- 2. Write these as single powers:
 - (a) $7^5 \times 7^{10}$
 - (b) $12^9 \div 12^3$
 - (c) $(5^7)^4$
 - (d) $9^{-2} \times 9^{12}$

 - (e) $\frac{13^7}{13^{-8}}$ (f) $(8^5)^{-2}$
- 3. Evaluate these fractional indices:
 - (a) $81^{\frac{1}{2}}$
 - (b) $343^{\frac{1}{3}}$
 - (c) $16807^{\frac{3}{5}}$
 - (d) $1000000^{\frac{2}{6}}$
 - (e) $1331^{\frac{2}{3}}$
 - (f) $1024^{-\frac{2}{5}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{196}$
 - (b) $\sqrt[3]{729}$

- (c) $\sqrt[4]{2401}$
- (d) $\sqrt{1.44}$
- (e) $\sqrt[3]{-512}$
- (f) $\sqrt[5]{32768}$
- 5. Express in index form:
 - (a) $\sqrt{23}$
 - (b) $\sqrt[3]{17}$
 - (c) $\frac{1}{\sqrt{13}}$
 - (d) $\sqrt[4]{u^{13}}$
 - (e) $\frac{1}{\sqrt[3]{g^{10}}}$
 - (f) $\sqrt{u} \times \sqrt[3]{u}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $7^6 \times 7^{-9} \times 7^{10}$
 - (b) $\frac{10^{11} \times 10^{-7}}{10^{-6}}$
 - (c) $(8^4)^{-6} \times 8^{19}$
 - (d) $\frac{11^{-7} \times 11^{15}}{11^6}$
- 7. Evaluate these expressions:
 - (a) $1331^{\frac{2}{3}}$
 - (b) $2401^{-\frac{3}{4}}$
 - (c) $16807^{\frac{2}{5}}$
 - (d) $16384^{-\frac{4}{7}}$
 - (e) $4096^{\frac{1}{3}}$
 - (f) $100000^{-\frac{3}{5}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{8}{9}} \times x^{\frac{1}{3}}$
 - (b) $\frac{p^{\frac{10}{3}}}{p^{\frac{1}{4}}}$
 - (c) $(g^{\frac{1}{7}})^{14}$
 - (d) $\sqrt{u} \times u^{\frac{1}{8}}$
 - (e) $\frac{\sqrt[3]{r^{10}}}{\sqrt{r}}$
 - (f) $(q^{-\frac{1}{7}})^{-14}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{17} \times 17^7$
 - (b) $\frac{19^5}{\sqrt[3]{19}}$
 - (c) $\sqrt[4]{12^{13}} \times 12^{-\frac{4}{5}}$
 - (d) $\frac{\sqrt{23}}{\sqrt[3]{23^{10}}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{76}$
 - (b) $\sqrt{117}$
 - (c) $\sqrt{124}$
 - (d) $\sqrt{207}$
 - (e) $\sqrt{243}$
 - (f) $\sqrt{800}$
- 11. Simplify these expressions:
 - (a) $8\sqrt{17} + 13\sqrt{17}$
 - (b) $17\sqrt{7} 7\sqrt{7}$
 - (c) $\sqrt{52} + \sqrt{117}$
 - (d) $\sqrt{175} \sqrt{112}$
 - (e) $7\sqrt{24} + 9\sqrt{54}$
 - (f) $\sqrt{207} \sqrt{128} + \sqrt{32}$
- 12. Multiply and simplify:
 - (a) $\sqrt{11} \times \sqrt{44}$
 - (b) $\sqrt{24} \times \sqrt{96}$
 - (c) $8\sqrt{5} \times 6\sqrt{20}$
 - (d) $\sqrt{18} \times \sqrt{72}$
 - (e) $\sqrt{8} \times \sqrt{32} \times \sqrt{128}$
 - (f) $9\sqrt{7} \times 6\sqrt{28}$
- 13. Expand and simplify:
 - (a) $(7 + \sqrt{13})(4 \sqrt{13})$
 - (b) $(6 + \sqrt{19})(3 + 7\sqrt{19})$
 - (c) $(9 \sqrt{17})^2$
 - (d) $(\sqrt{23} + \sqrt{7})(\sqrt{23} \sqrt{7})$
 - (e) $(7\sqrt{13}+1)(7\sqrt{13}-1)$
 - (f) $(\sqrt{19} + 7)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{19}}$
 - (b) $\frac{13}{\sqrt{23}}$
 - (c) $\frac{\sqrt{13}}{\sqrt{52}}$
 - (d) $\frac{14}{7\sqrt{2}}$
 - (e) $\frac{1}{6+\sqrt{13}}$
 - $(f) \ \frac{9}{1-\sqrt{19}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{11}{7+\sqrt{17}}$
 - (b) $\frac{17}{6-\sqrt{29}}$
 - $(c) \ \frac{\sqrt{13}}{1+\sqrt{13}}$
 - (d) $\frac{7\sqrt{19}}{6+\sqrt{19}}$
 - (e) $\frac{1}{\sqrt{21} \sqrt{13}}$
 - (f) $\frac{\sqrt{19}+6}{\sqrt{19}-7}$
- 16. Simplify these expressions completely:
 - (a) $\frac{\sqrt{32} + \sqrt{72}}{\sqrt{8}}$
 - (b) $\frac{\sqrt{84} \sqrt{56}}{\sqrt{14}}$
 - (c) $\sqrt{(8+\sqrt{19})(8-\sqrt{19})}$
 - (d) $\sqrt{124} 7\sqrt{31} + \sqrt{84}$
 - (e) $(\sqrt{13} + \sqrt{52})^2$
 - (f) $\frac{\sqrt{117}}{\sqrt{13}} + \frac{\sqrt{91}}{\sqrt{13}}$
- 17. Prove that:
 - (a) $(\sqrt{o} + \sqrt{q})(\sqrt{o} \sqrt{q}) = o q$
 - (b) $\frac{1}{\sqrt{r}+\sqrt{t}} = \frac{\sqrt{r}-\sqrt{t}}{r-t}$
 - (c) $(r + t\sqrt{w})^2 = r^2 + 2rt\sqrt{w} + t^2w$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 891000
 - (b) 0.000117
 - (c) 6780000000
 - (d) 0.0000000429
 - (e) 1149.5
 - (f) 0.01169
- 19. Write these in ordinary form:
 - (a) 9.7×10^1
 - (b) 7.89×10^{-9}
 - (c) 1.0432×10^{-12}
 - (d) 6.58×10^{15}
 - (e) 1.17×10^{-7}
 - (f) 8.91×10^{10}
- 20. Calculate, giving answers in standard form:

- (a) $(9 \times 10^9) \times (11 \times 10^{11})$
- (b) $(7 \times 10^{-7}) \times (13 \times 10^{12})$
- (c) $(21 \times 10^{10}) \div (7 \times 10^{-5})$
- (d) $(18 \times 10^{-9}) \div (12 \times 10^{-12})$
- (e) $(9 \times 10^8)^2$
- (f) $\sqrt{64 \times 10^{18}}$
- 21. Calculate these more complex expressions:
 - (a) $(7.2 \times 10^8) \times (2.75 \times 10^{-10})$
 - (b) $\frac{14.4 \times 10^{11}}{3.6 \times 10^{-8}}$
 - (c) $(8.1 \times 10^{-7}) + (9.7 \times 10^{-8})$
 - (d) $(10.6 \times 10^{10}) (7.4 \times 10^9)$
 - (e) $\frac{(7.2 \times 10^6) \times (6.3 \times 10^{-7})}{(6.3 \times 10^{-7})}$
 - (f) $(8.41 \times 10^{16})^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):
 - (a) $\frac{7}{13} + \frac{9}{26}$

 - (b) $\frac{13}{27} \frac{26}{11}$ (c) $\frac{16}{17} \times \frac{34}{24}$ (d) $\frac{14}{27} \div \frac{21}{36}$ (e) $\frac{11}{12} \frac{7}{16} + \frac{13}{48}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{8}$
 - (b) $0.\overline{91}$
 - (c) $0.6\overline{2}$
 - (d) $0.\overline{428571}$
 - (e) $5.3\overline{7}$
 - (f) $0.91\overline{8}$
- 24. Work out these percentage calculations:
 - (a) Increase 760 by 65%
 - (b) Decrease 980 by 32%
 - (c) Find 37.5% of 1120
 - (d) What percentage is 147 out of 196?
 - (e) If 85% of a number is 221, find the number
 - (f) A price increases from £120 to £132. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 70% increase, a price is £289. Find the original price
 - (b) After a 65% decrease, a quantity is 126. Find the original quantity
 - (c) The value of a car decreases by 45% each year. If it's worth £9075 now, what was it worth 2 years ago?
 - (d) An investment grows by 9% per year. After 2 years it's worth £2373.21. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $7^{-2} + 11^0 12^{-1}$
 - (b) $\sqrt{81} \times 512^{\frac{1}{3}} 7^{-2}$
 - (c) $\frac{1728^{\frac{2}{3}} 16807^{\frac{3}{5}}}{100^{\frac{1}{2}}}$
 - (d) $49^{-\frac{1}{2}} + 100^{\frac{1}{2}} \times 6^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{11}{\sqrt{13}} + \frac{7}{\sqrt{52}}$
 - (b) $\sqrt{54} \times \sqrt{96} \sqrt{216}$
 - (c) $\frac{\sqrt{175}+\sqrt{112}}{\sqrt{7}}$
 - (d) $(7\sqrt{2}-6)^2$
- 28. Work with standard form in context:
 - (a) The mass of an oxygen atom is 2.66×10^{-26} kg. Find the mass of 6.02×10^{23} oxygen atoms
 - (b) Infrared radiation travels at 3×10^8 m/s. How far does it travel in one month (use 1 month = 2.628×10^6 seconds)?
 - (c) The thickness of a sheet of paper is approximately 1.0×10^{-4} m. How many sheets would make a stack 7.5 cm high?
 - (d) A graphics processor handles 1.44×10^{14} operations per second. How many operations in 25 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{13}$ is irrational. (Use proof by contradiction: assume $\sqrt{13} = \frac{u}{v}$ where u and v are integers with no common factors)
- 30. The number δ satisfies $\delta^2 = 5\delta 3$.
 - (a) Show that $\delta = \frac{5+\sqrt{13}}{2}$
 - (b) Calculate δ to 4 decimal places
 - (c) Find $\frac{1}{\delta}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{11}+\sqrt{13}+\sqrt{17}}$. (Hint: First rationalize using $(\sqrt{11}+\sqrt{13})-\sqrt{17}$)
- 32. A rectangle has sides of length $(7 + \sqrt{13})$ cm and $(7 \sqrt{13})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of algae septuples every 10 hours. If there are initially 9×10^2 algae:
 - (a) How many algae after 40 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 4×10^{10} algae?
- 34. Show that $\frac{1}{\sqrt{o}+\sqrt{q}} + \frac{1}{\sqrt{o}-\sqrt{q}} = \frac{2\sqrt{o}}{o-q}$

- 35. A cylinder has volume $V = \pi r^2 h$. If the volume is 648π cm³ and h = 18 cm:
 - (a) Find the radius in surd form
 - (b) Find the surface area (use $A = 2\pi r^2 + 2\pi rh$)
 - (c) Express both answers exactly
- 36. The equation $x^2 14x + 1 = 0$ has solutions $x = 7 \pm 4\sqrt{3}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{7+4\sqrt{3}} + \frac{1}{7-4\sqrt{3}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$