A Level Pure Mathematics Practice Test 1: Differential Equations

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Introduction to Differential Equations

- 1. Define the following terms and give examples:
 - (a) Differential equation
 - (b) Order of a differential equation
 - (c) Degree of a differential equation
 - (d) General solution
 - (e) Particular solution
 - (f) Initial condition
- 2. Classify these differential equations by order and degree:

(a)
$$\frac{dy}{dx} = 3x + 2$$

(b)
$$\frac{d^2y}{dx^2} + 4y = 0$$

(c)
$$\left(\frac{dy}{dx}\right)^2 + y = x$$

(d)
$$\frac{d^3y}{dx^3} - 2\frac{dy}{dx} + y = e^x$$

(e)
$$x \frac{dy}{dx} + y^2 = 1$$

(f)
$$\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^3 + y = 0$$

3. Verify that the given functions are solutions to the differential equations:

(a)
$$y = 3e^{2x}$$
 satisfies $\frac{dy}{dx} = 2y$

(b)
$$y = A\cos x + B\sin x$$
 satisfies $\frac{d^2y}{dx^2} + y = 0$

(c)
$$y = x^2 + 2x + C$$
 satisfies $\frac{dy}{dx} = 2x + 2$

(d)
$$y = Ce^{-x^2/2}$$
 satisfies $\frac{dy}{dx} + xy = 0$

4. Form differential equations from the given families of curves:

(a)
$$y = Ae^{3x}$$
 (where A is an arbitrary constant)

(b)
$$y = A\cos(2x) + B\sin(2x)$$
 (where A and B are arbitrary constants)

1

(c)
$$x^2 + y^2 = r^2$$
 (where r is an arbitrary constant)

- (d) $y = Cx^2$ (where C is an arbitrary constant)
- 5. Explain the difference between:
 - (a) Ordinary and partial differential equations
 - (b) Linear and non-linear differential equations
 - (c) Homogeneous and non-homogeneous differential equations
 - (d) Separable and non-separable differential equations

Section B: First-Order Differential Equations - Direct Integration

- 6. Solve these differential equations by direct integration:
 - (a) $\frac{dy}{dx} = 6x^2$
 - (b) $\frac{dy}{dx} = e^{3x}$
 - (c) $\frac{dy}{dx} = \frac{1}{x+1}$
 - (d) $\frac{dy}{dx} = \cos(2x)$
 - (e) $\frac{dy}{dx} = \frac{2x}{x^2+1}$
 - (f) $\frac{dy}{dx} = x^2 + 3x 2$
- 7. Solve these differential equations with given initial conditions:
 - (a) $\frac{dy}{dx} = 4x^3$, y(0) = 2
 - (b) $\frac{dy}{dx} = e^x$, y(0) = 5
 - (c) $\frac{dy}{dx} = \sin x$, $y(\pi) = 1$
 - (d) $\frac{dy}{dx} = \frac{1}{x}$, y(1) = 3 (for x > 0)
 - (e) $\frac{dy}{dx} = 2x + 1, y(1) = 4$
- 8. Find the particular solution to each differential equation:
 - (a) $\frac{dy}{dx} = 3x^2 2x + 1$, passing through (0, 2)
 - (b) $\frac{dy}{dx} = e^{2x} + 3$, passing through (0, 1)
 - (c) $\frac{dy}{dx} = \cos x \sin x$, passing through $(\pi/2, 0)$
 - (d) $\frac{dy}{dx} = \frac{1}{x^2+1}$, passing through $(0,\pi)$
- 9. A particle moves along a straight line such that its velocity is given by $v = \frac{ds}{dt} = 6t^2 4t + 1$.
 - (a) Find the displacement s as a function of time t
 - (b) If s = 0 when t = 0, find the particular solution
 - (c) Find the displacement after 3 seconds
 - (d) Find the acceleration as a function of time
- 10. The gradient of a curve at any point (x, y) is $3x^2 + 2x 1$.
 - (a) Find the general equation of the curve
 - (b) Find the particular equation if the curve passes through (1,5)
 - (c) Find the coordinates where the gradient is zero
 - (d) Sketch the curve showing key features

Section C: Separation of Variables

- 11. Solve these separable differential equations:
 - (a) $\frac{dy}{dx} = xy$
 - (b) $\frac{dy}{dx} = \frac{y}{x}$
 - (c) $\frac{dy}{dx} = y^2$
 - (d) $\frac{dy}{dx} = \frac{x}{y}$
 - (e) $\frac{dy}{dx} = e^{x+y}$
 - $(f) \frac{dy}{dx} = \frac{x^2}{y^2}$
- 12. Solve with the given initial conditions:
 - (a) $\frac{dy}{dx} = 2xy, y(0) = 1$
 - (b) $\frac{dy}{dx} = \frac{y}{x}$, y(1) = 2 (for x > 0)
 - (c) $\frac{dy}{dx} = \frac{y^2}{x^2}$, y(1) = 1
 - (d) $\frac{dy}{dx} = y(1-y), y(0) = 0.5$
 - (e) $\frac{dy}{dx} = \frac{x}{\sqrt{y}}, y(0) = 1$
- 13. Find particular solutions to these equations:
 - (a) $y\frac{dy}{dx} = x$, passing through (2,1)
 - (b) $\frac{dy}{dx} = \frac{y\cos x}{\sin x}$, passing through $(\pi/2, 3)$
 - (c) $(1+x^2)\frac{dy}{dx} = y^2$, passing through (0,1)
 - (d) $x \frac{dy}{dx} = y \ln y$, passing through (1, e)
- 14. Solve these more complex separable equations:
 - (a) $\frac{dy}{dx} = \frac{x(1+y^2)}{y(1+x^2)}$
 - (b) $\frac{dy}{dx} = \frac{ye^x}{x^2}$
 - (c) $\cos y \frac{dy}{dx} = \sin x$
 - (d) $\frac{dy}{dx} = \frac{x^2+1}{y^2+1}$
 - (e) $\frac{dy}{dx} = \frac{xy^2}{x^2+1}$
- 15. Determine which of these equations are separable and solve those that are:
 - (a) $\frac{dy}{dx} = x + y$
 - (b) $\frac{dy}{dx} = xy + x$
 - (c) $\frac{dy}{dx} = x^2 + y^2$
 - (d) $\frac{dy}{dx} = \frac{x+y}{x-y}$
 - (e) $\frac{dy}{dx} = e^{x-y}$
 - (f) $\frac{dy}{dx} = \sin(x+y)$

Section D: Applications of First-Order Differential Equations

16. Population growth models:

- (a) A population grows at a rate proportional to its size. If P(t) represents population at time t and the growth rate is 3% per year, set up and solve the differential equation.
- (b) If the initial population is 1000, find the population after 10 years.
- (c) How long does it take for the population to double?
- (d) What assumptions does this model make about population growth?

17. Radioactive decay:

- (a) The rate of radioactive decay is proportional to the amount present. Set up the differential equation for substance with decay constant k.
- (b) If half-life is 1000 years, find the decay constant k.
- (c) If initially there are 100g, how much remains after 2000 years?
- (d) How long until only 10g remains?

18. Newton's law of cooling:

- (a) A body cools at a rate proportional to the temperature difference with its surroundings. Set up the differential equation.
- (b) A cup of coffee at 90°C is placed in a room at 20°C. After 5 minutes it has cooled to 70°C. Find the temperature after 15 minutes.
- (c) How long does it take to reach 30°C?
- (d) What is the limiting temperature as $t \to \infty$?

19. Mixing problems:

- (a) A tank contains 100L of pure water. Salt water with concentration 0.5 kg/L flows in at 2 L/min, and the mixture flows out at the same rate. Set up and solve for the salt concentration over time.
- (b) Find the concentration after 1 hour.
- (c) What is the limiting concentration as $t \to \infty$?
- (d) Sketch the concentration vs. time graph.

20. Economic models:

- (a) The rate of price increase is proportional to the excess demand. If demand exceeds supply by 100 units and this causes a 2% price increase per month, model this situation.
- (b) If current price is £50, find the price after 6 months.
- (c) An investment grows continuously at 5% per annum. If £1000 is invested, find the value after t years.
- (d) Compare with compound interest calculated annually.

Section E: Linear First-Order Differential Equations

- 21. Identify which equations are linear and solve using integrating factors:
 - (a) $\frac{dy}{dx} + 2y = e^x$
 - (b) $\frac{dy}{dx} 3y = x^2$
 - (c) $\frac{dy}{dx} + \frac{y}{x} = x$ (for x > 0)

- (d) $\frac{dy}{dx} + y \tan x = \sec x$
- (e) $x \frac{dy}{dx} + 2y = x^3$
- (f) $\frac{dy}{dx} + y^2 = x$ (is this linear?)
- 22. Solve these linear first-order equations with initial conditions:
 - (a) $\frac{dy}{dx} + y = 2e^x$, y(0) = 1
 - (b) $\frac{dy}{dx} 2y = 4x$, y(0) = 3
 - (c) $\frac{dy}{dx} + 3y = 6$, y(0) = 0
 - (d) $\frac{dy}{dx} + \frac{y}{x} = 2x$, y(1) = 4 (for x > 0)
- 23. Find the integrating factor and solve:
 - (a) $\frac{dy}{dx} + y\cos x = \sin x\cos x$
 - (b) $\frac{dy}{dx} y \cot x = 2 \cos x$
 - (c) $(1+x)\frac{dy}{dx} + y = (1+x)^2$
 - (d) $x \frac{dy}{dx} + y = x^2 + 1$ (for x > 0)
- 24. Applications of linear differential equations:
 - (a) An RC circuit has resistance 10 and capacitance 0.01F. If a 12V battery is connected at t=0, find the current i(t) given $\frac{di}{dt}+\frac{i}{RC}=0$.
 - (b) A spring-mass system with damping satisfies $m\frac{dv}{dt}+cv=mg$ where v is velocity. Solve for v(t) if v(0)=0.
 - (c) A savings account earns 4% interest continuously, but £1000 is withdrawn each year. Model this with a differential equation and solve.
- 25. Compare different solution methods:
 - (a) For $\frac{dy}{dx} = 2xy + x$, solve by separation of variables
 - (b) Solve the same equation using integrating factor method
 - (c) Verify both solutions are equivalent
 - (d) Discuss when each method is more appropriate

Section F: Second-Order Differential Equations - Introduction

- 26. Verify that these functions satisfy the given differential equations:
 - (a) $y = Ae^{2x} + Be^{-3x}$ satisfies $\frac{d^2y}{dx^2} + \frac{dy}{dx} 6y = 0$
 - (b) $y = A\cos(3x) + B\sin(3x)$ satisfies $\frac{d^2y}{dx^2} + 9y = 0$
 - (c) $y = (A + Bx)e^{-x}$ satisfies $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$
 - (d) $y = Ae^x + Be^{2x} + x$ satisfies $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = -2$
- 27. Reduce these second-order equations to first-order by substitution $v = \frac{dy}{dx}$:
 - (a) $\frac{d^2y}{dx^2} = \frac{dy}{dx}$
 - (b) $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$
 - (c) $x \frac{d^2y}{dx^2} = \frac{dy}{dx}$

(d)
$$\frac{d^2y}{dx^2} = 1 + \left(\frac{dy}{dx}\right)^2$$

- 28. Solve by direct integration (reducing order):
 - (a) $\frac{d^2y}{dx^2} = 6x$
 - (b) $\frac{d^2y}{dx^2} = e^{2x}$
 - (c) $\frac{d^2y}{dx^2} = \sin x$
 - (d) $\frac{d^2y}{dx^2} = x^2 + 2x 1$
- 29. Solve with given initial conditions:
 - (a) $\frac{d^2y}{dx^2} = 12x^2$, y(0) = 1, y'(0) = 2
 - (b) $\frac{d^2y}{dx^2} = 2e^x$, y(0) = 0, y'(0) = 1
 - (c) $\frac{d^2y}{dx^2} = \cos x$, y(0) = 1, $y(\pi) = -1$
 - (d) $\frac{d^2y}{dx^2} = \frac{2}{x^3}$, y(1) = 0, y'(1) = 1 (for x > 0)
- 30. Physical interpretation:
 - (a) If s(t) represents position and $\frac{d^2s}{dt^2} = -g$ (constant gravity), find s(t) given initial position s_0 and velocity v_0 .
 - (b) A particle moves so that its acceleration is a = 6t. Find position if s(0) = 0 and v(0) = 2.
 - (c) The acceleration of a falling object with air resistance is $a = g kv^2$. Explain why this leads to a first-order equation for velocity.

Section G: Homogeneous Linear Second-Order Equations

- 31. Find the auxiliary equation and solve:
 - (a) $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 0$
 - (b) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 0$
 - (c) $\frac{d^2y}{dx^2} 2\frac{dy}{dx} 8y = 0$
 - (d) $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$
 - (e) $\frac{d^2y}{dx^2} 4y = 0$
 - (f) $\frac{d^2y}{dx^2} + 16y = 0$
- 32. Classify the roots and write the general solution:
 - (a) $m^2 7m + 12 = 0$ (two distinct real roots)
 - (b) $m^2 + 6m + 9 = 0$ (repeated real root)
 - (c) $m^2 + 2m + 5 = 0$ (complex conjugate roots)
 - (d) $m^2 9 = 0$ (two distinct real roots)
 - (e) $m^2 + 1 = 0$ (pure imaginary roots)
 - (f) $m^2 4m + 4 = 0$ (repeated real root)
- 33. Solve these equations with initial conditions:
 - (a) $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0, y(0) = 1, y'(0) = 0$
 - (b) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0, y(0) = 2, y'(0) = -1$

(c)
$$\frac{d^2y}{dx^2} + 4y = 0$$
, $y(0) = 1$, $y'(0) = 2$

(d)
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 10y = 0, y(0) = 0, y'(0) = 1$$

- 34. Analyze the behavior of solutions:
 - (a) For $\frac{d^2y}{dx^2} k^2y = 0$ where k > 0, discuss the nature of solutions
 - (b) For $\frac{d^2y}{dx^2} + k^2y = 0$ where k > 0, describe the oscillatory behavior
 - (c) For $\frac{d^2y}{dx^2} + 2a\frac{dy}{dx} + a^2y = 0$, explain critical damping
 - (d) Sketch solution curves for different types of roots
- 35. Higher-order equations:

(a) Solve
$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$$

- (b) Find the general solution to $\frac{d^4y}{dx^4} y = 0$
- (c) Solve $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} \frac{dy}{dx} y = 0$
- (d) Discuss the form of solutions for nth order linear homogeneous equations

Section H: Non-homogeneous Linear Second-Order Equations

36. Solve using the method of undetermined coefficients:

(a)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 6$$

(b)
$$\frac{d^2y}{dx^2} + 4y = 8x$$

(c)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} = e^x$$

$$(d) \frac{d^2y}{dx^2} + y = \sin x$$

(e)
$$\frac{d^2y}{dx^2} - 4y = e^{2x}$$

(f)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^2$$

- 37. Find particular integrals for these right-hand sides:
 - (a) Constant: f(x) = k
 - (b) Polynomial: $f(x) = ax^2 + bx + c$
 - (c) Exponential: $f(x) = Ae^{ax}$
 - (d) Trigonometric: $f(x) = A\cos(ax) + B\sin(ax)$
 - (e) Products: $f(x) = xe^x$, $f(x) = x \sin x$
- 38. Handle resonance cases:

(a)
$$\frac{d^2y}{dx^2} + 4y = \cos(2x)$$
 (resonance)

(b)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x$$
 (resonance)

(c)
$$\frac{d^2y}{dx^2} + y = \sin x$$
 (resonance)

- (d) Explain why we multiply by x in resonance cases
- 39. Complete solutions with initial conditions:

(a)
$$\frac{d^2y}{dx^2} + y = 2$$
, $y(0) = 1$, $y'(0) = 0$

(b)
$$\frac{d^2y}{dx^2} - y = x$$
, $y(0) = 0$, $y'(0) = 1$

(c)
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}, y(0) = 1, y'(0) = -1$$

(d)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 10\cos x$$
, $y(0) = 0$, $y'(0) = 2$

- 40. Variation of parameters method:
 - (a) Solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = \frac{e^x}{x}$ using variation of parameters
 - (b) Apply to $\frac{d^2y}{dx^2} + y = \sec x$
 - (c) Compare with undetermined coefficients where applicable
 - (d) When is variation of parameters necessary?

Section I: Applications of Second-Order Differential Equations

41. Simple harmonic motion:

- (a) A mass on a spring satisfies $m\frac{d^2x}{dt^2} + kx = 0$. Solve for x(t) given x(0) = A and $\dot{x}(0) = 0$.
- (b) Find the period and frequency of oscillation.
- (c) If m = 2 kg and k = 8 N/m, and the mass is displaced 0.5 m from equilibrium and released, find x(t).
- (d) What is the maximum speed of the mass?

42. Damped harmonic motion:

- (a) For $m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$, classify motion based on discriminant.
- (b) With m = 1, c = 4, k = 3, solve with x(0) = 1, $\dot{x}(0) = 0$ (overdamped).
- (c) With m=1, c=2, k=1, solve with x(0)=1, $\dot{x}(0)=0$ (critically damped).
- (d) With m = 1, c = 1, k = 2, solve with x(0) = 1, $\dot{x}(0) = 0$ (underdamped).
- (e) Sketch the three types of motion.

43. Forced oscillations:

- (a) Solve $\frac{d^2x}{dt^2} + 4x = 8\cos(3t)$ with x(0) = 0, $\dot{x}(0) = 0$.
- (b) Find the steady-state and transient solutions.
- (c) Analyze resonance when forcing frequency equals natural frequency.
- (d) With damping: $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = 10\cos(2t)$, find the amplitude response.

44. Electrical circuits:

- (a) An RLC circuit satisfies $L\frac{d^2q}{dt^2}+R\frac{dq}{dt}+\frac{q}{C}=V(t).$ Explain each term.
- (b) With L=1 H, R=6 , C=0.1 F, and V=10 V (constant), solve for charge q(t).
- (c) Find the current $i(t) = \frac{dq}{dt}$.
- (d) Analyze the circuit's natural frequency and damping ratio.

45. Beam deflection:

- (a) A simply supported beam under uniform load satisfies $EI\frac{d^4y}{dx^4} = w$ where y is deflection.
- (b) For a cantilever beam with point load at the end, $EI\frac{d^2y}{dx^2} = -M(x)$.
- (c) Solve for the deflection curve with appropriate boundary conditions.
- (d) Find the maximum deflection and its location.

46. Population dynamics:

- (a) The predator-prey model gives coupled equations. For a simplified case where prey population oscillates: $\frac{d^2P}{dt^2} + k^2P = 0$, solve for P(t).
- (b) A population with inertia satisfies $\frac{d^2P}{dt^2} + a\frac{dP}{dt} + bP = cK$ where K is carrying capacity.
- (c) Analyze stability of equilibrium solutions.
- (d) Model boom-bust cycles in economics using similar equations.

Section J: Advanced Topics and Modeling

- 47. Systems of differential equations:
 - (a) Solve the system: $\frac{dx}{dt} = 2x + y$, $\frac{dy}{dt} = x + 2y$
 - (b) Convert $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$ to a first-order system
 - (c) Analyze equilibrium points and stability
 - (d) Sketch phase portraits for different cases
- 48. Laplace transform method:
 - (a) Use Laplace transforms to solve $\frac{d^2y}{dt^2} + 4y = 0$, y(0) = 1, y'(0) = 2
 - (b) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = e^{-t}$ with zero initial conditions
 - (c) Handle discontinuous forcing functions using unit step function
 - (d) Apply to solve integro-differential equations
- 49. Series solutions:
 - (a) Find power series solution to $\frac{d^2y}{dx^2} + xy = 0$ about x = 0
 - (b) Solve $\frac{d^2y}{dx^2} x\frac{dy}{dx} + y = 0$ using series method
 - (c) Identify convergence radius
 - (d) Compare with known special functions
- 50. Boundary value problems:
 - (a) Solve $\frac{d^2y}{dx^2} + \lambda y = 0$ with $y(0) = y(\pi) = 0$
 - (b) Find eigenvalues and eigenfunctions
 - (c) Apply to heat conduction: $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$
 - (d) Use separation of variables for partial differential equations
- 51. Existence and uniqueness theorems:
 - (a) State conditions for existence and uniqueness of solutions
 - (b) Give examples where solutions don't exist or aren't unique
 - (c) Discuss continuation of solutions
 - (d) Analyze singular points and their classification
- 52. Stability analysis:
 - (a) Define Lyapunov stability for differential equations
 - (b) Analyze stability of linear systems using eigenvalues
 - (c) Apply linearization to study nonlinear systems near equilibria
 - (d) Use phase plane analysis for autonomous systems
- 53. Numerical methods for differential equations:
 - (a) Apply Euler's method to $\frac{dy}{dx} = x + y$, y(0) = 1
 - (b) Use improved Euler (Heun's) method for better accuracy
 - (c) Implement Runge-Kutta methods
 - (d) Discuss stability and convergence of numerical schemes
 - (e) Apply to systems and higher-order equations

54. Green's functions:

- (a) Define Green's function for $\frac{d^2y}{dx^2} + y = f(x)$
- (b) Construct Green's function using boundary conditions
- (c) Apply to solve non-homogeneous boundary value problems
- (d) Relate to impulse response in physical systems

55. Advanced applications:

- (a) Model a double pendulum system with coupled equations
- (b) Analyze vibrations in mechanical systems with multiple degrees of freedom
- (c) Study wave propagation using $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$
- (d) Model chemical reaction kinetics with system of ODEs
- (e) Apply to epidemiological models (SIR model)
- (f) Study chaos in nonlinear differential equations

56. Integral equations and transforms:

- (a) Convert differential equations to integral equations
- (b) Use Fourier transforms for solving PDEs
- (c) Apply convolution theorem for Green's functions
- (d) Solve Volterra and Fredholm integral equations
- (e) Connect to probability and stochastic differential equations

57. Modeling project - Choose one real-world application:

- (a) Climate modeling: temperature variations over time
- (b) Epidemic spread: SIR or SEIR models with vaccination
- (c) Financial mathematics: Black-Scholes equation
- (d) Engineering: control systems and feedback
- (e) Biology: population genetics or enzyme kinetics
- (f) Physics: quantum harmonic oscillator or wave mechanics

For your chosen application:

- (a) Derive the differential equation from first principles
- (b) Classify the equation and choose appropriate solution method
- (c) Solve analytically where possible, numerically otherwise
- (d) Interpret solutions in context of the physical problem
- (e) Validate model against real data or known results
- (f) Discuss limitations and possible extensions
- (g) Present findings with appropriate graphs and analysis

Section K: Problem-Solving Strategies and Review

- 58. Classification and strategy guide:
 - (a) Create a flowchart for classifying differential equations
 - (b) List solution methods for each type
 - (c) Discuss when to use analytical vs. numerical methods
 - (d) Identify common pitfalls and how to avoid them
- 59. Mixed practice problems:
 - (a) $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ (homogeneous)
 - (b) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}\sin x$
 - (c) $(x+y)\frac{dy}{dx} = x y$ (substitution method)
 - (d) $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$ (Euler equation)
 - (e) $\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$ (polar substitution)
- 60. Verification and checking:
 - (a) Methods for verifying solutions
 - (b) Checking initial and boundary conditions
 - (c) Dimensional analysis in physical problems
 - (d) Limiting behavior and asymptotic analysis
- 61. Historical context and development:
 - (a) Newton and Leibniz: origins of calculus and differential equations
 - (b) Euler's contributions: linear equations and special functions
 - (c) Lagrange and Hamilton: mechanics and variational principles
 - (d) Modern developments: chaos theory and computer solutions
- 62. Connections to other areas:
 - (a) Linear algebra: matrix methods for systems
 - (b) Complex analysis: solutions in the complex plane
 - (c) Fourier analysis: frequency domain methods
 - (d) Probability: stochastic differential equations
 - (e) Numerical analysis: computational solutions
- 63. Examination techniques:
 - (a) Time management strategies for differential equation problems
 - (b) Common examination question types and approaches
 - (c) What to do when standard methods don't work
 - (d) Partial credit strategies and clear presentation
 - (e) Calculator and technology usage guidelines
- 64. Extended investigations:
 - (a) Research a specific type of differential equation not covered in detail
 - (b) Investigate historical development of a particular solution method

- (c) Study applications in your area of interest (physics, biology, economics)
- (d) Compare analytical and numerical solutions for a challenging problem
- (e) Explore modern research areas involving differential equations

65. Synthesis problems requiring multiple techniques:

- (a) A mass-spring system with time-varying parameters
- (b) Population model with seasonal variation and migration
- (c) RC circuit with switching and non-constant voltage
- (d) Heat conduction in a rod with temperature-dependent properties
- (e) Chemical reaction with multiple pathways and catalysis
- (f) Economic model with policy interventions and external shocks

66. Critical thinking questions:

- (a) When might a differential equation model be inappropriate?
- (b) How do you handle discontinuities in real-world applications?
- (c) What assumptions are inherent in linearization techniques?
- (d) How do numerical errors propagate in long-term simulations?
- (e) When is it better to use a simpler model vs. a more accurate one?

67. Future directions and advanced study:

- (a) Partial differential equations and field theory
- (b) Stochastic differential equations and noise
- (c) Delay differential equations and memory effects
- (d) Fractional differential equations and anomalous diffusion
- (e) Differential equations on manifolds and geometry
- (f) Computational fluid dynamics and numerical PDEs
- (g) Machine learning approaches to differential equations

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 250

For more resources and practice materials, visit: stepup maths.co.uk $\,$