A Level Pure Mathematics Practice Test 4: Differential Equations

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Concepts and Classification

- 1. Explain with examples:
 - (a) Order vs. degree of differential equations
 - (b) Separable vs. non-separable equations
 - (c) Transient vs. steady-state solutions
 - (d) Bifurcation points in differential equations
 - (e) Well-posed vs. ill-posed problems
 - (f) Integral curves and solution families
- 2. Classify these equations:

(a)
$$x\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = y$$

(b)
$$\frac{d^5y}{dx^5} - 3\frac{d^3y}{dx^3} + 2y = x^3$$

(c)
$$\arctan\left(\frac{dy}{dx}\right) + xy = 1$$

(d)
$$\left(\frac{d^2y}{dx^2}\right)^3 + x\frac{dy}{dx} - y^2 = 0$$

(e)
$$\frac{dy}{dx} + P(x)y = Q(x)y^{1/3}$$
 (generalized Bernoulli)

(f)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 (wave equation)

3. Verify these solutions:

(a)
$$y = Ae^{3x} + Be^{-2x}$$
 satisfies $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$

(b)
$$y = C_1 x + C_2 x \ln x$$
 satisfies $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$

(c)
$$y = e^{-x} \sin x$$
 is a solution to $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$

- (d) xy = C represents solutions to $x\frac{dy}{dx} + y = 0$
- 4. Find differential equations for:

(a)
$$y = Ce^{-3x} + D$$
 (exponential with constant)

(b)
$$y = C_1 e^{2x} \cos x + C_2 e^{2x} \sin x$$
 (complex exponentials)

1

(c)
$$(x-h)^2 + (y-k)^2 = r^2$$
 (circles of radius r)

- (d) $y = Cx^n$ where n is constant
- 5. Phase plane analysis:
 - (a) For $\frac{dy}{dx} = (y-1)(y-3)$, find critical points
 - (b) Classify stability of each equilibrium
 - (c) Sketch phase portrait with flow directions
 - (d) Describe basin of attraction for stable equilibria

Section B: Direct Integration and Elementary Methods

- 6. Integrate directly:
 - (a) $\frac{dy}{dx} = 7x^3 4x + 3$
 - (b) $\frac{dy}{dx} = 3e^{-x} 2$
 - (c) $\frac{dy}{dx} = \frac{6}{3x+2}$
 - (d) $\frac{dy}{dx} = \csc^2(2x)$
 - (e) $\frac{dy}{dx} = \frac{4x^3}{x^4+1}$
 - (f) $\frac{dy}{dx} = (2x+1)e^{x^2+x}$
- 7. Solve with conditions:
 - (a) $\frac{dy}{dx} = 15x^2 + 8x$, y(1) = 8
 - (b) $\frac{dy}{dx} = 5e^{3x}, y(0) = 4$
 - (c) $\frac{dy}{dx} = \cos(3x), \ y(\pi/6) = 2$
 - (d) $\frac{dy}{dx} = \frac{5}{x+4}$, $y(0) = \ln 4$ (for x > -4)
 - (e) $\frac{dy}{dx} = 3x\sqrt{x^2 + 1}, y(0) = 7$
- 8. Higher derivatives:
 - (a) $\frac{d^2y}{dx^2} = 12x^2 6$, y(0) = 4, y'(0) = -3
 - (b) $\frac{d^2y}{dx^2} = 3e^x$, y(0) = 2, y'(0) = 1
 - (c) $\frac{d^3y}{dx^3} = 18x$, y(0) = 0, y'(0) = 3, y''(0) = -2
 - (d) $\frac{d^2y}{dx^2} = \sin(2x), y(0) = 1, y(\pi/4) = 2$
- 9. Kinematics applications:
 - (a) Acceleration a = 10t 8. Find v(t) and s(t) if v(0) = 3, s(0) = 1.
 - (b) Object dropped from 200m height. Find time to hit ground and impact velocity.
 - (c) Spring equation $\frac{d^2x}{dt^2} = -16x$. Solve for x(0) = 2, $\dot{x}(0) = 4$.
 - (d) Curve has second derivative 6x. Find equation through (1,2) with slope 5.
- 10. Growth and decay:
 - (a) Population grows at $\frac{dP}{dt} = 0.08P$. If P(0) = 2000, find P(t) and doubling time.
 - (b) Radioactive substance decays: $\frac{dN}{dt} = -0.03N$. Find half-life.
 - (c) Investment: $\frac{dA}{dt} = 0.05A + 500$. Solve if A(0) = 10000.
 - (d) Chemical concentration: $\frac{dc}{dt} = -kc^2$ where k > 0.

Section C: Separation of Variables

11. Solve by separation:

(a)
$$\frac{dy}{dx} = 6xy^4$$

(b)
$$\frac{dy}{dx} = \frac{y^3}{x^2}$$

(c)
$$\frac{dy}{dx} = e^{3x-2y}$$

(d)
$$\frac{dy}{dx} = \frac{x^2 \cos x}{y^3}$$

(e)
$$\frac{dy}{dx} = \frac{\sin x}{\cos y}$$

$$(f) \frac{dy}{dx} = \frac{x^2y}{x^3 + 27}$$

12. Initial value problems:

(a)
$$\frac{dy}{dx} = 4xy$$
, $y(0) = 3$

(b)
$$\frac{dy}{dx} = \frac{3y}{x}$$
, $y(1) = 8$ (for $x > 0$)

(c)
$$\frac{dy}{dx} = \frac{x^4}{y^3}$$
, $y(0) = 2$

(d)
$$\frac{dy}{dx} = y(5-y), y(0) = 2$$

(e)
$$\frac{dy}{dx} = \frac{3x}{\sqrt{16-y^2}}, y(0) = 0$$

13. Complex separable forms:

(a)
$$(9+y^2)\frac{dy}{dx} = 4xy$$

(b)
$$\frac{dy}{dx} = \frac{ye^{4x}}{x^4+1}$$

(c)
$$\cos^2 y \frac{dy}{dx} = \sin(2x)$$

(d)
$$\frac{dy}{dx} = \frac{x^3(1+y^2)}{y(1+x^4)}$$

(e)
$$y^2 \ln y \frac{dy}{dx} = x^3$$

14. Applications:

- (a) Malthusian growth: $\frac{dP}{dt} = 0.06P$, P(0) = 1200. When does population reach 5000?
- (b) Drug elimination: $\frac{dC}{dt} = -0.2C$. If C(0) = 50 mg/L, find time for concentration to drop to 10 mg/L.
- (c) Newton's law: $\frac{dT}{dt} = -k(T-22)$. Object cools from 95°C to 75°C in 5 minutes. Find k and time to reach 30°C.
- (d) Verhulst model: $\frac{dP}{dt} = rP(1 \frac{P}{K})$ with r = 0.2, K = 2000, P(0) = 100.

15. Separability tests:

(a)
$$\frac{dy}{dx} = x^2y + xy^2$$
 (separable)

(b)
$$\frac{dy}{dx} = x^2 + xy + y^2$$
 (not separable)

(c)
$$\frac{dy}{dx} = \cos(x - y)$$
 (not separable)

(d)
$$\frac{dy}{dx} = e^{2x-3y}$$
 (separable)

(e)
$$\frac{dy}{dx} = \frac{xy}{x^2+1}$$
 (separable)

Section D: Linear First-Order Equations

16. Integrating factor method:

(a)
$$\frac{dy}{dx} + 6y = e^{5x}$$

(b)
$$\frac{dy}{dx} - 4y = 3x^3$$

(c)
$$\frac{dy}{dx} + \frac{5y}{x} = x^4$$
 (for $x > 0$)

(d)
$$\frac{dy}{dx} + y \tan x = \sec x \tan x$$

(e)
$$x \frac{dy}{dx} + 5y = x^3$$

(f)
$$\frac{dy}{dx} + 4xy = 2xe^{-2x^2}$$

17. With initial conditions:

(a)
$$\frac{dy}{dx} + 5y = 15e^{3x}$$
, $y(0) = 2$

(b)
$$\frac{dy}{dx} - 3y = 9x$$
, $y(0) = 1$

(c)
$$\frac{dy}{dx} + 4y = 12$$
, $y(0) = 0$

(d)
$$\frac{dy}{dx} + \frac{3y}{x} = 6x$$
, $y(1) = 4$ (for $x > 0$)

18. Advanced forms:

(a)
$$\frac{dy}{dx} + y \csc x = \cot x \csc x$$

(b)
$$(x^2+4)\frac{dy}{dx} + 2xy = x^2+4$$

(c)
$$\frac{dy}{dx} + \frac{4y}{x^2+1} = \frac{4x}{x^2+1}$$

(d)
$$x^4 \frac{dy}{dx} + 3x^3 y = x^6 \text{ (for } x > 0)$$

19. Engineering applications:

- (a) LC circuit: $L\frac{di}{dt} + \frac{q}{C} = V_0$ with $q = \int i \, dt$. Find i(t).
- (b) Salt mixing: 300L tank, solution enters at 4 L/min (3 kg/L salt), exits at 4 L/min. Find salt concentration over time.
- (c) Compound interest: $\frac{dA}{dt} = 0.07A 1500$ (7% rate, £1500 annual withdrawal).
- (d) Air resistance: $m\frac{dv}{dt} + cv = mg$ for m = 2 kg, c = 0.1, g = 9.8.

20. Method comparison:

(a) Solve
$$\frac{dy}{dx} = 5xy + 5x$$
 by separation

(b) Solve as linear:
$$\frac{dy}{dx} - 5xy = 5x$$

(d) Discuss advantages and computational complexity

Section E: Second-Order Homogeneous Equations

21. Characteristic equation method:

(a)
$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$$

(b)
$$\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 36y = 0$$

(c)
$$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 29y = 0$$

(d)
$$\frac{d^2y}{dx^2} + 64y = 0$$

(e)
$$\frac{d^2y}{dx^2} - 49y = 0$$

(f)
$$\frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 26y = 0$$

22. Solution types:

(a)
$$m^2 - 10m + 21 = 0$$
 (distinct real)

(b)
$$m^2 + 14m + 49 = 0$$
 (repeated real)

(c)
$$m^2 + 6m + 25 = 0$$
 (complex conjugate)

(d)
$$m^2 - 100 = 0$$
 (distinct real)

(e)
$$m^2 + 16 = 0$$
 (pure imaginary)

23. Boundary value problems:

(a)
$$\frac{d^2y}{dx^2} - 11\frac{dy}{dx} + 28y = 0, y(0) = 3, y'(0) = 1$$

(b)
$$\frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 25y = 0, y(0) = 1, y'(0) = -3$$

(c)
$$\frac{d^2y}{dx^2} + 36y = 0$$
, $y(0) = 0$, $y'(0) = 6$

(d)
$$\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 37y = 0, y(0) = 2, y'(0) = 4$$

24. Physical interpretation:

- (a) Free vibrations: mass-spring systems
- (b) Electrical oscillations: LC circuits
- (c) Damping effects: overdamped, critical, underdamped
- (d) Energy considerations and conservation

25. Higher-order:

(a)
$$\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 4y = 0$$

(b)
$$\frac{d^4y}{dx^4} - 256y = 0$$

(c) Solution structure for general nth order

Section F: Non-homogeneous Second-Order Equations

26. Undetermined coefficients:

(a)
$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 24$$

(b)
$$\frac{d^2y}{dx^2} + 36y = 108x^2$$

(c)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 20y = e^{5x}$$

(d)
$$\frac{d^2y}{dx^2} + 25y = \cos(4x)$$

(e)
$$\frac{d^2y}{dx^2} - 25y = 5e^{-5x}$$

(f)
$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = x^2 + 4$$

27. Resonance cases:

(a)
$$\frac{d^2y}{dx^2} + 36y = \sin(6x)$$
 (resonance)

(b)
$$\frac{d^2y}{dx^2} - 9\frac{dy}{dx} + 20y = e^{4x}$$
 (resonance)

(c)
$$\frac{d^2y}{dx^2} + 9y = \cos(3x)$$
 (resonance)

- (d) Why multiply particular solution by x?
- 28. Complete solutions:

(a)
$$\frac{d^2y}{dx^2} + 16y = 32$$
, $y(0) = 3$, $y'(0) = 0$

(b)
$$\frac{d^2y}{dx^2} - 16y = 32x$$
, $y(0) = 0$, $y'(0) = 4$

(c)
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 9e^{-3x}, y(0) = 2, y'(0) = -3$$

29. Trial function guide:

- (a) Polynomial forcing functions
- (b) Exponential forcing functions
- (c) Trigonometric forcing functions
- (d) Product and combination rules

30. Variation of parameters:

(a)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = \frac{e^{2x}}{x}$$

- (b) When standard methods fail
- (c) Wronskian determinant application

Section G: Physical Systems and Applications

31. Harmonic oscillators:

- (a) Mass-spring: $m\frac{d^2x}{dt^2} + kx = 0$ with x(0) = 5, $\dot{x}(0) = 0$, m = 4 kg, k = 36 N/m
- (b) Calculate period, frequency, and maximum velocity
- (c) Energy analysis: kinetic and potential
- (d) Simple pendulum approximation for small angles

32. Damped oscillations:

- (a) $m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$ with $m=1,\, c=7,\, k=10$ (overdamped)
- (b) Critical damping: m = 1, c = 10, k = 25 with x(0) = 4, $\dot{x}(0) = -5$
- (c) Underdamped: m = 2, c = 6, k = 20 with x(0) = 3, $\dot{x}(0) = 0$
- (d) Damping ratio and quality factor calculations

33. Forced systems:

- (a) $\frac{d^2x}{dt^2} + 49x = 98\cos(6t)$ with zero initial conditions
- (b) Steady-state amplitude and phase relationships
- (c) Resonance condition: $\frac{d^2x}{dt^2} + 36x = 72\cos(6t)$
- (d) Frequency response and bandwidth

34. Circuit analysis:

- (a) RLC series: $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = V(t)$
- (b) Component values: $L=0.8~\mathrm{H},\,R=8$, $C=0.125~\mathrm{F},\,V=24~\mathrm{V}$
- (c) Transient and steady-state behavior
- (d) Impedance and frequency response

35. Biological and economic models:

- (a) Population cycles: $\frac{d^2P}{dt^2} + a\frac{dP}{dt} + bP = cK$ where K is carrying capacity
- (b) Market dynamics: $\frac{d^2p}{dt^2} + \frac{dp}{dt} + p = D$ (price oscillations)
- (c) Stability conditions and equilibrium analysis
- (d) Parameter sensitivity and control

Section H: Advanced Techniques

- 36. Homogeneous first-order:
 - (a) $\frac{dy}{dx} = \frac{4x+3y}{2x}$ (substitute $v = \frac{y}{x}$)
 - (b) $\frac{dy}{dx} = \frac{x^2 2xy + y^2}{x^2}$
 - (c) $(3x^2 + 2xy)dx + (x^2 + 3y^2)dy = 0$
 - (d) Homogeneity test and transformation
- 37. Bernoulli equations:
 - (a) $\frac{dy}{dx} + 5y = 3xy^4$ (substitute $v = y^{1-n}$)
 - (b) $x \frac{dy}{dx} + 4y = 2y^3$
 - (c) $\frac{dy}{dx} \frac{4y}{x} = \frac{y^3}{x^4}$
- 38. Exact equations:
 - (a) $(5x^4 + 4y)dx + (4x + 6y)dy = 0$
 - (b) $(e^x \sin y + 3x^2)dx + (3y^2 + e^x \cos y)dy = 0$
 - (c) Integrating factor determination
- 39. Special substitutions:
 - (a) $\frac{d^2y}{dx^2} + \frac{4}{x}\frac{dy}{dx} = 0$ (let $v = \frac{dy}{dx}$)
 - (b) $y \frac{d^2y}{dx^2} = 4\left(\frac{dy}{dx}\right)^2$
 - (c) Euler-Cauchy: $x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx} + 4y = 0$
- 40. Systems introduction:
 - (a) $\frac{dx}{dt} = 5x + 3y$, $\frac{dy}{dt} = 3x + 5y$
 - (b) Matrix formulation and eigenvalues
 - (c) Phase plane sketching
 - (d) Stability classification

Section I: Modeling and Synthesis

- 41. Major modeling project select one:
 - (a) Infectious disease spread with immunity loss
 - (b) Ecosystem dynamics with competition
 - (c) Chemical reaction networks with catalysis
 - (d) Economic cycles with policy intervention
 - (e) Structural engineering with multiple modes
 - (f) Climate modeling with feedback mechanisms

Complete analysis including:

- (a) Model derivation from physical laws
- (b) Mathematical classification and solution approach
- (c) Analytical solutions where feasible
- (d) Numerical methods for complex cases

- (e) Parameter estimation and model validation
- (f) Sensitivity analysis and uncertainty quantification
- (g) Policy implications and predictions
- (h) Model limitations and future improvements

42. Numerical methods:

- (a) Euler method for $\frac{dy}{dx} = y x^2$, y(0) = 2
- (b) Modified Euler (midpoint method)
- (c) Runge-Kutta fourth-order method
- (d) Error estimation and convergence

43. Boundary problems:

- (a) $\frac{d^2y}{dx^2} + k^2y = 0$ with y(0) = y(L) = 0
- (b) Eigenfunction expansion
- (c) Heat equation separation of variables
- (d) Fourier series connections

44. Theory and existence:

- (a) Picard-Lindelöf theorem conditions
- (b) Uniqueness vs. non-uniqueness examples
- (c) Continuation of solutions
- (d) Blow-up phenomena

45. Integration and review:

- (a) Complete classification system
- (b) Solution strategy selection
- (c) Common mistakes and prevention
- (d) Historical perspective and modern developments
- (e) Interdisciplinary applications

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 250

For more resources and practice materials, visit: stepupmaths.co.uk