GCSE Higher Mathematics Practice Test 1: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 2^5
 - (b) 3^{-2}
 - (c) 5^0
 - (d) $(-2)^4$
 - (e) $(-3)^3$
 - $(f) 4^{-3}$
- 2. Write these as single powers:
 - (a) $2^3 \times 2^5$
 - (b) $3^7 \div 3^4$
 - $(c) (5^2)^3$
 - (d) $4^{-2} \times 4^6$
 - (e) $\frac{6^8}{6^{-2}}$
 - $(f) (2^3)^{-2}$
- 3. Evaluate these fractional indices:
 - (a) $9^{\frac{1}{2}}$
 - (b) $27^{\frac{1}{3}}$
 - (c) $16^{\frac{3}{4}}$
 - (d) $32^{\frac{2}{5}}$
 - (e) $125^{\frac{2}{3}}$
 - (f) $8^{-\frac{2}{3}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{49}$
 - (b) $\sqrt[3]{64}$

- (c) $\sqrt[4]{81}$
- (d) $\sqrt{0.25}$
- (e) $\sqrt[3]{-8}$
- (f) $\sqrt[5]{32}$
- 5. Express in index form:
 - (a) $\sqrt{7}$
 - (b) $\sqrt[3]{5}$
 - (c) $\frac{1}{\sqrt{2}}$
 - (d) $\sqrt[4]{x^3}$
 - (e) $\frac{1}{\sqrt[3]{a^2}}$
 - (f) $\sqrt{x} \times \sqrt[3]{x}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $2^3 \times 2^{-1} \times 2^4$
 - (b) $\frac{3^5 \times 3^{-2}}{3^{-1}}$
 - (c) $(4^2)^{-3} \times 4^7$
 - (d) $\frac{5^{-3} \times 5^8}{5^2}$
- 7. Evaluate these expressions:
 - (a) $8^{\frac{2}{3}}$
 - (b) $9^{-\frac{3}{2}}$
 - (c) $16^{\frac{5}{4}}$
 - (d) $25^{-\frac{3}{2}}$
 - (e) $64^{\frac{1}{6}}$
 - (f) $32^{-\frac{4}{5}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{2}{3}} \times x^{\frac{1}{4}}$
 - (b) $\frac{y^{\frac{3}{2}}}{y^{\frac{1}{6}}}$
 - (c) $(a^{\frac{1}{2}})^4$
 - (d) $\sqrt{x} \times x^{\frac{1}{3}}$
 - (e) $\frac{\sqrt[3]{m^2}}{\sqrt{m}}$
 - (f) $(p^{-\frac{1}{2}})^{-4}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{2} \times 2^3$
 - (b) $\frac{5^2}{\sqrt[3]{5}}$
 - (c) $\sqrt[4]{3^3} \times 3^{-\frac{1}{2}}$
 - (d) $\frac{\sqrt{7}}{\sqrt[3]{7^2}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{18}$
 - (b) $\sqrt{50}$
 - (c) $\sqrt{72}$
 - (d) $\sqrt{98}$
 - (e) $\sqrt{200}$
 - (f) $\sqrt{300}$
- 11. Simplify these expressions:
 - (a) $3\sqrt{2} + 5\sqrt{2}$
 - (b) $7\sqrt{3} 2\sqrt{3}$
 - (c) $\sqrt{8} + \sqrt{18}$
 - (d) $\sqrt{50} \sqrt{32}$
 - (e) $2\sqrt{12} + 3\sqrt{27}$
 - (f) $\sqrt{75} \sqrt{48} + \sqrt{12}$
- 12. Multiply and simplify:
 - (a) $\sqrt{3} \times \sqrt{12}$
 - (b) $\sqrt{8} \times \sqrt{18}$
 - (c) $2\sqrt{5} \times 3\sqrt{10}$
 - (d) $\sqrt{6} \times \sqrt{24}$
 - (e) $\sqrt{2} \times \sqrt{8} \times \sqrt{32}$
 - (f) $3\sqrt{7} \times 2\sqrt{28}$
- 13. Expand and simplify:
 - (a) $(2+\sqrt{3})(5-\sqrt{3})$
 - (b) $(1+\sqrt{5})(3+2\sqrt{5})$
 - (c) $(4 \sqrt{2})^2$
 - (d) $(\sqrt{7} + \sqrt{3})(\sqrt{7} \sqrt{3})$
 - (e) $(2\sqrt{3}+1)(2\sqrt{3}-1)$
 - (f) $(\sqrt{5}+2)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{5}}$
 - (b) $\frac{3}{\sqrt{7}}$
 - (c) $\frac{\sqrt{2}}{\sqrt{8}}$
 - (d) $\frac{4}{2\sqrt{3}}$
 - (e) $\frac{1}{3+\sqrt{2}}$
 - $(f) \ \frac{2}{1-\sqrt{5}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{3}{2+\sqrt{7}}$
 - (b) $\frac{5}{3-\sqrt{11}}$
 - (c) $\frac{\sqrt{3}}{1+\sqrt{3}}$
 - (d) $\frac{2\sqrt{5}}{3+\sqrt{5}}$
 - (e) $\frac{1}{\sqrt{6}-\sqrt{2}}$
 - (f) $\frac{\sqrt{7}+1}{\sqrt{7}-2}$
- 16. Simplify these expressions completely:
 - (a) $\frac{\sqrt{12}+\sqrt{27}}{\sqrt{3}}$
 - (b) $\frac{\sqrt{32} \sqrt{8}}{\sqrt{2}}$
 - (c) $\sqrt{(3+\sqrt{5})(3-\sqrt{5})}$
 - (d) $\sqrt{50} 2\sqrt{8} + \sqrt{18}$
 - (e) $(\sqrt{2} + \sqrt{8})^2$
 - (f) $\frac{\sqrt{48}}{\sqrt{3}} + \frac{\sqrt{75}}{\sqrt{3}}$
- 17. Prove that:
 - (a) $(\sqrt{a} + \sqrt{b})(\sqrt{a} \sqrt{b}) = a b$
 - (b) $\frac{1}{\sqrt{x} + \sqrt{y}} = \frac{\sqrt{x} \sqrt{y}}{x y}$
 - (c) $(a+b\sqrt{c})^2 = a^2 + 2ab\sqrt{c} + b^2c$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 347000
 - (b) 0.000052
 - (c) 1890000000
 - (d) 0.0000000034
 - (e) 567.8
 - (f) 0.00456
- 19. Write these in ordinary form:
 - (a) 4.7×10^6
 - (b) 2.34×10^{-4}
 - (c) 9.876×10^{-7}
 - (d) 1.23×10^{10}
 - (e) 5.6×10^{-2}
 - (f) 7.89×10^5
- 20. Calculate, giving answers in standard form:

- (a) $(3 \times 10^4) \times (2 \times 10^6)$
- (b) $(8 \times 10^{-3}) \times (5 \times 10^7)$
- (c) $(6 \times 10^5) \div (2 \times 10^{-3})$
- (d) $(9 \times 10^{-4}) \div (3 \times 10^{-7})$
- (e) $(4 \times 10^3)^2$
- (f) $\sqrt{9 \times 10^8}$
- 21. Calculate these more complex expressions:
 - (a) $(2.5 \times 10^3) \times (1.6 \times 10^{-5})$
 - (b) $\frac{7.2 \times 10^8}{1.8 \times 10^{-4}}$
 - (c) $(3.6 \times 10^{-2}) + (4.8 \times 10^{-3})$
 - (d) $(5.4 \times 10^5) (2.7 \times 10^4)$
 - (e) $(2.4 \times 10^3) \times (1.5 \times 10^{-2})$
 - (f) $(1.44 \times 10^6)^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):

 - (b) $\frac{7}{12} \frac{3}{16}$ (c) $\frac{4}{9} \times \frac{15}{8}$ (d) $\frac{7}{10} \div \frac{21}{25}$ (e) $\frac{3}{4} \frac{5}{6} + \frac{7}{12}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{3}$
 - (b) $0.\overline{27}$
 - (c) $0.1\overline{6}$
 - (d) $0.\overline{142857}$
 - (e) $2.3\overline{6}$
 - (f) $0.58\overline{3}$
- 24. Work out these percentage calculations:
 - (a) Increase 240 by 15%
 - (b) Decrease 350 by 8%
 - (c) Find 12.5% of 480
 - (d) What percentage is 72 out of 160?
 - (e) If 35% of a number is 91, find the number
 - (f) A price increases from £80 to £92. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 20% increase, a price is £144. Find the original price
 - (b) After a 15% decrease, a quantity is 68. Find the original quantity
 - (c) The value of a car decreases by 25% each year. If it's worth £12000 now, what was it worth 2 years ago?
 - (d) An investment grows by 8% per year. After 2 years it's worth £2333.28. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $2^{-3} + 3^0 5^{-1}$
 - (b) $\sqrt{16} \times 8^{\frac{1}{3}} 2^{-2}$
 - (c) $\frac{27^{\frac{2}{3}}-16^{\frac{3}{4}}}{9^{\frac{1}{2}}}$
 - (d) $8^{-\frac{2}{3}} + 25^{\frac{1}{2}} \times 4^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{3}{\sqrt{2}} + \frac{2}{\sqrt{8}}$
 - (b) $\sqrt{12} \times \sqrt{27} \sqrt{48}$
 - (c) $\frac{\sqrt{50}+\sqrt{32}}{\sqrt{2}}$
 - (d) $(2\sqrt{3}-1)^2$
- 28. Work with standard form in context:
 - (a) The mass of an electron is 9.11×10^{-31} kg. Find the mass of 6.02×10^{23} electrons
 - (b) Light travels at 3×10^8 m/s. How far does it travel in one year (use 1 year = 3.15×10^7 seconds)?
 - (c) The radius of an atom is approximately 1×10^{-10} m. How many atoms would fit in a line 1 cm long?
 - (d) A computer processes 2.4×10^9 operations per second. How many operations in 5 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{2}$ is irrational. (Use proof by contradiction: assume $\sqrt{2} = \frac{p}{q}$ where p and q are integers with no common factors)
- 30. The golden ratio ϕ satisfies $\phi^2 = \phi + 1$.
 - (a) Show that $\phi = \frac{1+\sqrt{5}}{2}$
 - (b) Calculate ϕ to 4 decimal places
 - (c) Find $\frac{1}{\phi}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$. (Hint: First rationalize using $(\sqrt{2}+\sqrt{3})-\sqrt{5}$)
- 32. A rectangle has sides of length $(2+\sqrt{3})$ cm and $(2-\sqrt{3})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of bacteria doubles every 3 hours. If there are initially 5×10^4 bacteria:
 - (a) How many bacteria after 12 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 10⁷ bacteria?
- 34. Show that $\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{2\sqrt{a}}{a-b}$

- 35. A sphere has volume $V=\frac{4}{3}\pi r^3.$ If the volume is 288π cm³:
 - (a) Find the radius in surd form
 - (b) Find the surface area (use $A = 4\pi r^2$)
 - (c) Express both answers exactly
- 36. The equation $x^2 4x + 1 = 0$ has solutions $x = 2 \pm \sqrt{3}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{2+\sqrt{3}}+\frac{1}{2-\sqrt{3}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$