A Level Pure Mathematics Practice Test 4: Vectors

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Vector Basics and Notation

1. Given vectors
$$\mathbf{s} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix}$$
 and $\mathbf{t} = \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix}$, calculate:

- (a) $\mathbf{s} + \mathbf{t}$
- (b) $\mathbf{s} \mathbf{t}$
- (c) 4s + 2t
- (d) 3s 5t
- (e) $|\mathbf{s}|$ and $|\mathbf{t}|$
- (f) A unit vector in the direction of s
- 2. Express these vectors in component form:

(a)
$$\overrightarrow{MN}$$
 where $M(4,2,-3)$ and $N(1,5,2)$

(b)
$$\overrightarrow{TU}$$
 where $T(-2,1,3)$ and $U(4,-3,1)$

(c) The position vector of point
$$V$$
 if $\overrightarrow{OV} = 4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$

(d)
$$\overrightarrow{NM}$$
 where $M(5,-1,4)$ and $N(2,3,-2)$

3. Given
$$\mathbf{c} = 4\mathbf{i} - 3\mathbf{j} + \mathbf{k}$$
 and $\mathbf{d} = 2\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$:

- (a) Find $|\mathbf{c}|$ and $|\mathbf{d}|$
- (b) Calculate $\mathbf{c} + \mathbf{d}$ and $\mathbf{c} \mathbf{d}$

(c) Find scalars
$$p$$
 and q such that $p\mathbf{c} + q\mathbf{d} = \begin{pmatrix} 3 \\ -6 \\ 9 \end{pmatrix}$

(d) Determine if ${\bf c}$ and ${\bf d}$ are parallel

4. Points
$$U$$
, V , and W have position vectors $\mathbf{u} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}$, and $\mathbf{w} = \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}$.

1

- (a) Find vectors \overrightarrow{UV} and \overrightarrow{UW}
- (b) Calculate the lengths |UV| and |UW|

- (c) Find the position vector of the midpoint of VW
- (d) Determine if triangle UVW is isosceles
- 5. Find the values of k for which these vectors are perpendicular:

(a)
$$\mathbf{p} = \begin{pmatrix} 4 \\ k \\ 1 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} k \\ 2 \\ -4 \end{pmatrix}$

(b)
$$\mathbf{a} = \begin{pmatrix} 2\\3k\\2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3\\-1\\k \end{pmatrix}$

(c)
$$\mathbf{x} = k\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$$
 and $\mathbf{y} = 2\mathbf{i} + k\mathbf{j} + 3\mathbf{k}$

Section B: Dot Product (Scalar Product)

6. Calculate the dot product of these vectors:

(a)
$$\mathbf{f} = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix}$$
 and $\mathbf{g} = \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$

(b)
$$\mathbf{h} = 4\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$$
 and $\mathbf{j} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$

(c)
$$\mathbf{k} = \begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix}$$
 and $\mathbf{l} = \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix}$

(d)
$$\mathbf{m} = 3\mathbf{i} + 4\mathbf{j}$$
 and $\mathbf{n} = 2\mathbf{i} - 5\mathbf{j} + 3\mathbf{k}$

7. Find the angle between these pairs of vectors:

(a)
$$\mathbf{p} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

(b)
$$\mathbf{r} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$
 and $\mathbf{s} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$

(c)
$$\mathbf{t} = 2\mathbf{i} + 5\mathbf{j}$$
 and $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$

(d)
$$\mathbf{v} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$

8. Use the dot product to verify these properties:

(a)
$$\mathbf{p} \cdot \mathbf{q} = \mathbf{q} \cdot \mathbf{p}$$
 (commutative)

(b)
$$\mathbf{p} \cdot (\mathbf{q} + \mathbf{r}) = \mathbf{p} \cdot \mathbf{q} + \mathbf{p} \cdot \mathbf{r}$$
 (distributive)

(c)
$$(k\mathbf{p}) \cdot \mathbf{q} = k(\mathbf{p} \cdot \mathbf{q})$$
 for scalar k

(d)
$$\mathbf{p} \cdot \mathbf{p} = |\mathbf{p}|^2$$

9. Given vectors
$$\mathbf{x} = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}$$
, $\mathbf{y} = \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix}$, and $\mathbf{z} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$:

- (a) Show that \mathbf{x} and \mathbf{y} are perpendicular
 - (b) Find the component of z in the direction of x
 - (c) Calculate $|\mathbf{x} + \mathbf{y} + \mathbf{z}|$

- (d) Find the angle between $\mathbf{x} + \mathbf{y}$ and \mathbf{z}
- 10. A triangle has vertices at D(4,1,3), E(2,5,1), and F(3,2,4).
 - (a) Find the vectors \overrightarrow{DE} and \overrightarrow{DF}
 - (b) Calculate the angle $\angle EDF$
 - (c) Find the area of triangle DEF
 - (d) Determine if the triangle is right-angled

Section C: Cross Product (Vector Product)

11. Calculate the cross product of these vectors:

(a)
$$\mathbf{r} = \begin{pmatrix} 4\\1\\3 \end{pmatrix}$$
 and $\mathbf{s} = \begin{pmatrix} 2\\5\\1 \end{pmatrix}$

(b) $\mathbf{t} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} \text{ and } \mathbf{u} = 2\mathbf{i} + \mathbf{j} + 5\mathbf{k}$

(c)
$$\mathbf{v} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} 3 \\ 1 \\ -5 \end{pmatrix}$

- (d) $\mathbf{x} = 4\mathbf{i} + 3\mathbf{j}$ and $\mathbf{y} = 3\mathbf{i} + 2\mathbf{k}$
- 12. Verify these properties of the cross product:
 - (a) $\mathbf{p} \times \mathbf{q} = -(\mathbf{q} \times \mathbf{p})$ (anti-commutative)
 - (b) $\mathbf{p} \times (\mathbf{q} + \mathbf{r}) = \mathbf{p} \times \mathbf{q} + \mathbf{p} \times \mathbf{r}$ (distributive)
 - (c) $\mathbf{p} \times \mathbf{p} = \mathbf{0}$
 - (d) $|\mathbf{p} \times \mathbf{q}|^2 = |\mathbf{p}|^2 |\mathbf{q}|^2 (\mathbf{p} \cdot \mathbf{q})^2$
- 13. Find the area of the parallelogram spanned by:

(a)
$$\mathbf{c} = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$$
 and $\mathbf{d} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$

- (b) $\mathbf{e} = 5\mathbf{i} + 2\mathbf{j} \mathbf{k} \text{ and } \mathbf{f} = 3\mathbf{i} 2\mathbf{j} + 4\mathbf{k}$
- (c) Vectors from origin to points (3, 1, 4) and (2, 4, 1)
- (d) \overrightarrow{GH} and \overrightarrow{GI} where G(4,2,1), H(1,5,2), I(3,1,5)

14. Given
$$\mathbf{p} = \begin{pmatrix} 5 \\ -2 \\ 3 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$:

- (a) Calculate $\mathbf{p} \times \mathbf{q}$
- (b) Verify that $\mathbf{p} \times \mathbf{q}$ is perpendicular to both \mathbf{p} and \mathbf{q}
- (c) Find a unit vector perpendicular to both **p** and **q**
- (d) Calculate the area of triangle with sides **p** and **q**
- 15. Use the scalar triple product $\mathbf{p} \cdot (\mathbf{q} \times \mathbf{r})$ to find:

(a) The volume of parallelepiped with edges
$$\mathbf{p} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$
, $\mathbf{q} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$, $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$

- (b) Whether points P(4,2,1), Q(1,5,3), R(2,1,5), S(4,4,2) are coplanar
- (c) The volume of tetrahedron with vertices at (0,0,0), (4,2,1), (1,4,2), (2,1,4)

Section D: Equations of Lines

- 16. Find the vector equation of the line:
 - (a) Passing through S(4,2,1) in direction $\begin{pmatrix} 3\\-1\\2 \end{pmatrix}$
 - (b) Passing through points T(3,1,5) and U(2,4,1)
 - (c) Through origin parallel to vector $3\mathbf{i} 4\mathbf{j} + 5\mathbf{k}$
 - (d) Through (4,1,3) parallel to the line $\mathbf{r} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix}$
- 17. Convert these to parametric form:

(a)
$$\mathbf{r} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$$

(b)
$$\mathbf{r} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$$

- (c) Line through (2, 5, 1) and (4, 1, 3)
- (d) $\mathbf{r} = (2+3t)\mathbf{i} + (4-t)\mathbf{j} + (1+2t)\mathbf{k}$
- 18. Find where these lines intersect the coordinate planes:

(a)
$$\mathbf{r} = \begin{pmatrix} 4 \\ 3 \\ 8 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$$
 and the *xy*-plane

(b)
$$\mathbf{r} = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$$
 and the xz -plane

- (c) Line through (5,2,3) and (1,4,0) with the yz-plane
- 19. Determine if these pairs of lines intersect, are parallel, or are skew:

(a)
$$L_1: \mathbf{r} = \begin{pmatrix} 4\\2\\1 \end{pmatrix} + t \begin{pmatrix} 2\\1\\4 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + s \begin{pmatrix} 3\\2\\1 \end{pmatrix}$

(b)
$$L_1: \mathbf{r} = \begin{pmatrix} 2\\4\\1 \end{pmatrix} + t \begin{pmatrix} 3\\1\\2 \end{pmatrix} \text{ and } L_2: \mathbf{r} = \begin{pmatrix} 3\\2\\4 \end{pmatrix} + s \begin{pmatrix} 6\\2\\4 \end{pmatrix}$$

- (c) Lines through (4,1,2) to (2,5,1) and (3,2,4) to (1,4,5)
- 20. Find the shortest distance between:

(a) Point
$$(3,5,2)$$
 and line $\mathbf{r} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$

(b) Parallel lines
$$L_1: \mathbf{r} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} + s \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$

(c) Skew lines
$$L_1: \mathbf{r} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

Section E: Equations of Planes

21. Find the equation of the plane:

(a) With normal vector
$$\begin{pmatrix} 4\\1\\-2 \end{pmatrix}$$
 passing through $(2,5,1)$

(b) Passing through points (4,0,0), (0,3,0), and (0,0,2)

(c) Containing the lines
$$\mathbf{r} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 and $\mathbf{r} = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$

(d) Parallel to vectors
$$\begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ through $(2,1,4)$

22. Convert between vector and Cartesian forms:

(a)
$$\mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$$
 to Cartesian form

(b)
$$4x - 3y + 2z = 8$$
 to vector form

(c)
$$2x + 4y - 3z = 12$$
 to parametric form

(d)
$$\mathbf{r} \cdot \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} = 8 \text{ to Cartesian form}$$

23. Find where these planes intersect coordinate axes:

(a)
$$4x + 2y - 3z = 12$$

(b)
$$3x - 4y + 2z = 24$$

(c)
$$2x + 5y + 3z = 30$$

(d)
$$3x + 4y + 2z = 12$$

24. Determine the relationship between these planes:

(a)
$$\Pi_1: 4x + 2y - z = 8$$
 and $\Pi_2: 8x + 4y - 2z = 16$

(b)
$$\Pi_1: 3x - 2y + 4z = 6$$
 and $\Pi_2: 2x + 3y - z = 8$

(c)
$$\Pi_1: 3x + 4y + 2z = 12$$
 and $\Pi_2: 6x + 8y + 4z = 18$

(d)
$$\Pi_1: 4x - 3y + 2z = 10$$
 and $\Pi_2: 3x + 4y - z = 7$

25. Find the line of intersection of these planes:

(a)
$$4x + 2y + z = 9$$
 and $2x - 3y + 4z = 6$

(b)
$$3x + 4y - 2z = 10$$
 and $2x - 3y + z = 4$

(c)
$$5x - 2y + 3z = 8$$
 and $2x + 4y - z = 5$

(d)
$$3x + 2y + 4z = 12$$
 and $4x - 3y + 2z = 9$

Section F: Angles and Distances

26. Find the angle between these planes:

(a)
$$5x + 2y - 4z = 8$$
 and $3x - 5y + 2z = 9$

(b)
$$4x + 3y - 2z = 10$$
 and $2x - 4y + 5z = 8$

(c)
$$\mathbf{r} \cdot \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} = 6 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = 7$$

(d)
$$3x + 2y + 5z = 15$$
 and $2x - 5y + 3z = 9$

- 27. Calculate the distance from point to plane:
 - (a) Point (4,3,2) to plane 5x + 2y 3z = 8
 - (b) Point (2, -4, 3) to plane 4x 3y + 2z = 10
 - (c) Point (0,0,0) to plane 3x + 4y 2z = 25
 - (d) Point (5, 2, -3) to plane 3x 5y + 4z = 12
- 28. Find the angle between line and plane:

(a) Line
$$\mathbf{r} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 and plane $3x + 4y + 2z = 10$

(b) Line through (4, 2, 5) and (1, 6, 2) with plane 4x - 3y + 2z = 9

(c) Line
$$\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} + s \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$
 and plane $3x + 5y - 2z = 8$

29. Determine where these lines intersect planes:

(a)
$$\mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 and $2x + 4y + 3z = 20$

(b) Line through (3,5,2) and (2,1,5) with plane 4x-2y+3z=8

(c)
$$\mathbf{r} = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$$
 and $3x - 4y + 5z = 20$

- 30. Find the reflection of point in plane:
 - (a) Point (5,3,2) in plane 4x + 3y 2z = 8
 - (b) Point (2, -4, 5) in plane 3x 2y + 5z = 12
 - (c) Point (3,5,0) in plane 4x + 2y + 3z = 10

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepupmaths.co.uk