GCSE Higher Mathematics Practice Test 8: Geometry and Measures

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 90 minutes

Section A: Pythagoras' Theorem

- 1. Use Pythagoras' theorem to find the missing lengths:
 - (a) A right-angled triangle with legs 21 cm and 28 cm. Find the hypotenuse.
 - (b) A right-angled triangle with hypotenuse 73 cm and one leg 48 cm. Find the other leg.
 - (c) A right-angled triangle with legs 19.5 cm and 26 cm. Find the hypotenuse.
 - (d) A right-angled triangle with hypotenuse 74 cm and one leg 24 cm. Find the other leg.
- 2. Find the distance between these pairs of coordinate points:
 - (a) A(8, 13) and B(20, 28)
 - (b) C(-6, 9) and D(6, -3)
 - (c) E(-13, -9) and F(-1, 3)
 - (d) G(0, 19) and H(-21, 12)
- 3. A rectangle has length 39 cm and diagonal 51 cm. Find:
 - (a) The width of the rectangle
 - (b) The area of the rectangle
 - (c) The perimeter of the rectangle
- 4. A ladder 18.5 m long leans against a vertical wall. The foot of the ladder is 11.1 m from the wall.
 - (a) How high up the wall does the ladder reach?
 - (b) If the ladder slips so its foot is now 13.5 m from the wall, how far does the top slide down?
- 5. Determine whether these triangles are right-angled:
 - (a) Sides 18 cm, 80 cm, 82 cm
 - (b) Sides 19 cm, 180 cm, 181 cm
 - (c) Sides 24 cm, 32 cm, 40 cm
 - (d) Sides 33 cm, 44 cm, 55 cm

Section B: Basic Trigonometry

- 6. In a right-angled triangle with hypotenuse 41 cm and one leg 40 cm:
 - (a) Find the other leg using Pythagoras
 - (b) Calculate $\sin A$, $\cos A$, and $\tan A$ where A is the angle opposite the 40 cm side
 - (c) Find angle A to 1 decimal place
- 7. Use trigonometry to find the missing sides (give answers to 3 significant figures):
 - (a) Right-angled triangle: angle 62° , adjacent side 19 cm, find opposite side
 - (b) Right-angled triangle: angle 39°, hypotenuse 26 cm, find opposite side
 - (c) Right-angled triangle: angle 75°, opposite side 18 cm, find adjacent side
 - (d) Right-angled triangle: angle 48°, adjacent side 16 cm, find hypotenuse
- 8. Find the missing angles (to 1 decimal place):
 - (a) Right-angled triangle: opposite 15 cm, adjacent 23 cm
 - (b) Right-angled triangle: opposite 19.4 cm, hypotenuse 27.8 cm
 - (c) Right-angled triangle: adjacent 14.3 cm, hypotenuse 20.6 cm
 - (d) Right-angled triangle: opposite 35 cm, adjacent 21 cm
- 9. A 33 m ladder makes an angle of 86° with the ground.
 - (a) How high up the wall does it reach?
 - (b) How far is the foot of the ladder from the wall?
 - (c) What angle would the ladder make if its foot was 19 m from the wall?
- 10. From the top of a 66 m cliff, the angle of depression to a boat is 39°.
 - (a) Draw a diagram
 - (b) Find the horizontal distance from the cliff to the boat
 - (c) Find the direct distance from the top of the cliff to the boat

Section C: Advanced Trigonometry - Sine and Cosine Rules

- 11. Use the sine rule to find the missing parts:
 - (a) Triangle ABC: a = 22 cm, $A = 61^{\circ}$, $B = 59^{\circ}$. Find b and c.
 - (b) Triangle PQR: p = 30 cm, q = 34 cm, $P = 58^{\circ}$. Find angle Q.
 - (c) Triangle MNO: m = 18.7 cm, n = 24.3 cm, $M = 53^{\circ}$. Find angle N.
- 12. Use the cosine rule to find the missing parts:
 - (a) Triangle ABC: a=23 cm, b=20 cm, c=15 cm. Find angle C.
 - (b) Triangle DEF: d = 25 cm, e = 21 cm, $F = 68^{\circ}$. Find side f.
 - (c) Triangle STU: s = 17.4 cm, t = 21.8 cm, u = 14.7 cm. Find the largest angle.
- 13. A triangle has sides 25 cm, 27 cm, and 29 cm.
 - (a) Use the cosine rule to find the largest angle
 - (b) Use the sine rule to find another angle
 - (c) Find the area using the formula Area = $\frac{1}{2}ab\sin C$

- 14. Two ships leave port at the same time. Ship A travels 66 km on a bearing of 115° . Ship B travels 51 km on a bearing of 185° .
 - (a) Find the angle between their paths
 - (b) Calculate the distance between the ships
 - (c) Find the bearing of ship B from ship A
- 15. A parallelogram has sides 22 cm and 28 cm, with an included angle of 84°.
 - (a) Find the length of the diagonals
 - (b) Find the area of the parallelogram
 - (c) Find the other angles of the parallelogram

Section D: Circle Theorems

- 16. Apply circle theorems to find the missing angles:
 - (a) Angle at center is 164°. Find the angle at circumference subtending the same arc.
 - (b) Angle at circumference is 46°. Find the angle at center subtending the same arc.
 - (c) Two angles at circumference subtend the same arc. One is 59°. Find the other.
 - (d) Angle in semicircle DEF where DE is diameter. Find angle DFE.
- 17. In a circle with center O:
 - (a) Chord RS subtends angle 87° at circumference point T. Find angle ROS.
 - (b) Tangent VW touches circle at W. If angle VWO = 52° , find angle WVO.
 - (c) Two chords KL and MN intersect at V inside the circle. If angles KVM = 103° , find angle KVN
 - (d) Tangents from external point V touch circle at R and S. If angle RVS = 76°, find angle ROS.
- 18. Prove these circle theorems (provide written proof):
 - (a) Angle in semicircle is 90°
 - (b) Angles in same segment are equal
 - (c) Angle at center is twice angle at circumference
 - (d) Tangent is perpendicular to radius at point of contact
- 19. A circle has center O and radius 22 cm. Chord RS has length 36 cm.
 - (a) Find the perpendicular distance from O to chord RS
 - (b) Find angle ROS
 - (c) Find the area of sector ROS
 - (d) Find the area of triangle ROS

Section E: Geometrical Proof and Reasoning

- 20. Prove that the sum of angles in any triangle is 180°.
- 21. Prove that the exterior angle of a triangle equals the sum of the two interior opposite angles.
- 22. In triangle DEF, G is the midpoint of EF. Prove that DG is a median and that the three medians of a triangle meet at a single point.

- 23. MNOP is a parallelogram. Prove that:
 - (a) Opposite sides are equal
 - (b) Opposite angles are equal
 - (c) Diagonals bisect each other
- 24. Prove that if a quadrilateral has both pairs of opposite sides parallel, then it is a parallelogram.
- 25. In triangle DEF, the perpendicular bisectors of sides DE and EF meet at point V. Prove that V is equidistant from D, E, and F.
- 26. MNOP is a cyclic quadrilateral (vertices lie on a circle). Prove that opposite angles sum to 180°.
- 27. Prove that the angle bisectors of a triangle meet at a single point (the incenter).

Section F: Surface Area and Volume

- 28. Calculate the surface area and volume of these shapes:
 - (a) Cuboid: length 24 cm, width 19 cm, height 14 cm
 - (b) Cylinder: radius 11 cm, height 26 cm
 - (c) Sphere: radius 15 cm
 - (d) Cone: radius 13 cm, height 33 cm
- 29. A triangular prism has:
 - Triangular cross-section with base 20 cm and height 12 cm
 - Length 34 cm

Calculate:

- (a) The volume
- (b) The surface area
- (c) The total edge length
- 30. A square-based pyramid has:
 - Base edge 22 cm
 - Vertical height 17 cm

Find:

- (a) The volume
- (b) The slant height
- (c) The surface area
- 31. A hemisphere sits on top of a cylinder. Both have radius 10 cm and the cylinder has height 26 cm.
 - (a) Find the total volume
 - (b) Find the total surface area
 - (c) If this shape is a water tank, how much water does it hold?
- 32. A cone has base radius 14 cm and slant height 25 cm.
 - (a) Find the vertical height
 - (b) Calculate the volume
 - (c) Calculate the curved surface area
 - (d) Calculate the total surface area

Section G: Complex 3D Problems

- 33. A rectangular swimming pool is 60 m long, 30 m wide, and 5.5 m deep.
 - (a) Calculate the volume of water needed to fill it
 - (b) Find the surface area of the pool (5 faces no top)
 - (c) How much does it cost to tile the pool at £82 per m²?
 - (d) If water is added at 2400 liters per minute, how long to fill the pool?
- 34. A solid consists of a cylinder with radius 16 cm and height 24 cm, with a cone of radius 16 cm and height 22 cm on top.
 - (a) Calculate the total volume
 - (b) Calculate the total surface area
 - (c) If the solid is made of metal with density 10.2 g/cm³, find its mass
- 35. A spherical ball has radius 32 cm. A cylindrical hole of radius 12 cm is drilled through the center.
 - (a) Calculate the volume of material removed
 - (b) Calculate the remaining volume
 - (c) Calculate the new surface area (including the cylindrical hole)
- 36. A water tank is a horizontal cylinder with length 14 m and radius 3.3 m.
 - (a) Calculate its capacity in liters
 - (b) If it's half full, find the depth of water
 - (c) Calculate the surface area of water

Section H: Problem Solving and Applications

- 37. A regular hendecagon is inscribed in a circle of radius 30 cm.
 - (a) Find the side length of the hendecagon
 - (b) Calculate the area of the hendecagon
 - (c) Find the area between the circle and hendecagon
- 38. From point Z, the angle of elevation to the top of a tower is 34°. From point A, 140 m closer to the tower, the angle of elevation is 61°.
 - (a) Draw a diagram
 - (b) Find the height of the tower
 - (c) Find the distances from Z and A to the base of the tower
- 39. A field is in the shape of a triangle with sides 260 m, 300 m, and 340 m.
 - (a) Find the area of the field using Heron's formula
 - (b) Find the area using trigonometry
 - (c) A path 5.5 m wide runs around the perimeter. Find the area of the path
- 40. A church spire consists of a square-based pyramid on top of a cuboid. The cuboid is $22 \text{ m} \times 22 \text{ m} \times 34 \text{ m}$ high. The pyramid has height 26 m.
 - (a) Calculate the total volume

- (b) Calculate the total surface area
- (c) Find the angle the pyramid faces make with the horizontal
- 41. Two circles with radii 27 cm and 19 cm have centers 52 cm apart.
 - (a) Do the circles intersect? Justify your answer.
 - (b) Find the length of their common external tangent
 - (c) Calculate the area of overlap if they moved closer together
- 42. A satellite orbits Earth at height 1000 km above the surface. Earth's radius is 6400 km.
 - (a) Calculate the satellite's orbital radius
 - (b) Find the maximum distance the satellite can see on Earth's surface
 - (c) Calculate the area of Earth visible from the satellite
- 43. Prove that in any triangle, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ where R is the circumradius.
- 44. A frustum (truncated cone) has top radius 10 cm, bottom radius 27 cm, and height 20 cm.
 - (a) Find the height of the complete cone
 - (b) Calculate the volume of the frustum
 - (c) Calculate the curved surface area of the frustum

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$