A Level Pure Mathematics Practice Test 6: Algebra and Functions

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 2 hours

Section A: Algebraic Manipulation

1. Simplify these expressions:

(a)
$$\frac{x^2 - 64}{x^2 + 16x + 64}$$
(b)
$$\frac{7x^2 - 28}{x^2 + 3x - 18}$$
(c)
$$\frac{x^3 - 343}{x^2 + 7x + 49}$$
(d)
$$\frac{x^4 - 2401}{x^2 - 7x - 98}$$

(b)
$$\frac{7x^2-28}{x^2+3x-18}$$

(c)
$$\frac{x^3-343}{x^2+7x+49}$$

(d)
$$\frac{x^4 - 2401}{x^2 - 7x - 98}$$

2. Factorize completely:

(a)
$$x^3 + 18x^2 + 108x + 216$$

(b)
$$512x^3 - 729$$

(c)
$$x^{10} - 1024$$

(d)
$$x^{20} - 1$$

(e)
$$x^4 + 20x^2 + 100$$

(f)
$$x^3 - 7x^2 + 14x - 56$$

 $3. \ \, {\rm Express}$ as single fractions in simplest form:

(a)
$$\frac{7}{x-4} - \frac{5}{x+6}$$

(b)
$$\frac{6x}{x^2-36} + \frac{4}{x-6}$$

(b)
$$\frac{6x}{x^2-36} + \frac{4}{x-6}$$

(c) $\frac{4x-1}{x^2-5x+6} - \frac{2x+3}{x^2+2x-15}$

(d)
$$\frac{6}{x-2} + \frac{5}{x+4} - \frac{7}{x^2+2x-8}$$

4. Use the binomial theorem to expand:

(a)
$$(7x+3)^4$$

(b)
$$(4x - \frac{1}{3x})^5$$

(c)
$$(5+2x)^9$$
, and find the coefficient of x^7

- (d) Find the coefficient of x^0 in the expansion of $(x^6 + \frac{1}{x^4})^{15}$
- 5. Simplify using laws of indices:

(a)
$$\frac{13^{4x-2} \cdot 169^{2x+1}}{2197^{x+3}}$$

- (b) $\frac{1024^{x-1} \cdot 512^{3x}}{256^{2x+2}}$
- (c) $(x^{\frac{7}{8}})^{\frac{8}{9}} \cdot x^{-\frac{5}{6}}$
- (d) $\frac{(10x)^3 \cdot (4x^5)^2}{40x^{12}}$

Section B: Linear and Quadratic Equations

- 6. Solve these equations:
 - (a) $\frac{7x+3}{8} \frac{5x-2}{6} = \frac{1}{4}$
 - (b) $\frac{6x}{x-3} = \frac{8}{x+5}$
 - (c) $\sqrt{7x+2} = 5x-8$
 - (d) $\frac{6}{x+5} \frac{4}{x-3} = \frac{1}{6}$
- 7. Solve these quadratic equations, leaving answers in exact form where appropriate:
 - (a) $8x^2 15x + 6 = 0$
 - (b) $x^2 16x + 19 = 0$
 - (c) $7x^2 = 9x + 4$
 - (d) $(7x-4)^2 = 5(4x-1)$
- 8. For the quadratic equation $6x^2 (5k+2)x + 4k 1 = 0$:
 - (a) Find the discriminant in terms of k
 - (b) Find the values of k for which the equation has equal roots
 - (c) Find the values of k for which the equation has no real roots
 - (d) When k = 3, find the sum and product of the roots
- 9. The quadratic $cx^2 + dx + e = 0$ has roots α and β .
 - (a) Express $\alpha + \beta$ and $\alpha\beta$ in terms of c, d, and e
 - (b) Find a quadratic equation with roots $\alpha 5$ and $\beta 5$
 - (c) Find a quadratic equation with roots $3\alpha 2$ and $3\beta 2$
 - (d) If $\alpha^2 + \beta^2 = 30$ and $\alpha + \beta = 9$, find $\alpha\beta$

Section C: Cubic and Higher Order Equations

- 10. Solve these cubic equations:
 - (a) $x^3 10x^2 + 31x 30 = 0$
 - (b) $x^3 + 6x^2 7x 60 = 0$
 - (c) $9x^3 3x^2 31x 12 = 0$
 - (d) $x^3 18x^2 + 107x 210 = 0$
- 11. Given that x = 5 is a root of $x^3 8x^2 + cx + 10 = 0$:
 - (a) Find the value of c
 - (b) Factor the cubic completely
 - (c) Find all three roots
 - (d) Verify by substitution that all roots satisfy the equation
- 12. Solve these quartic equations:

(a)
$$x^4 - 29x^2 + 100 = 0$$

(b)
$$x^4 - 15x^2 + 54 = 0$$

(c)
$$(x^2 + 3x)^2 - 4(x^2 + 3x) - 12 = 0$$

(d)
$$x^4 - 5x^3 - 2x^2 + 24x - 18 = 0$$
 (given that $x = 3$ is a root)

13. Use the substitution $w = x^2 - \frac{1}{x^2}$ to solve:

(a)
$$x^4 + \frac{1}{x^4} = 7$$

(b)
$$2x^4 - 3x^2 + \frac{6}{x^2} - \frac{4}{x^4} = 0$$

Section D: Functions - Definition and Notation

14. For the function $f(x) = \frac{7x+3}{5x-4}$ where $x \neq \frac{4}{5}$:

(a) Find
$$f(0)$$
, $f(1)$, and $f(-2)$

- (b) Solve f(x) = 6
- (c) Find the value of x for which f(x) is undefined
- (d) Find the range of f(x)

15. Given $g(x) = x^2 + 16x + 55$:

- (a) Express g(x) in the form $(x+p)^2+q$
- (b) State the minimum value of g(x) and the value of x at which it occurs
- (c) Solve g(x) = 0
- (d) Find the range of q(x)

16. For $h(x) = \sqrt{64 - x^2}$:

- (a) Find the domain of h(x)
- (b) Find the range of h(x)
- (c) Sketch the graph of y = h(x)
- (d) Solve h(x) = 7

17. Define
$$k(x) = \begin{cases} 5x^2 - 3 & \text{if } x \le -1\\ 4x + 1 & \text{if } -1 < x < 4\\ 17 & \text{if } x \ge 4 \end{cases}$$

- (a) Find k(-2), k(-1), k(3), and k(5)
- (b) Is k(x) continuous at x = -1? Justify your answer
- (c) Is k(x) continuous at x = 4? Justify your answer
- (d) Sketch the graph of y = k(x)

Section E: Composite and Inverse Functions

18. Given f(x) = 10x + 7 and $g(x) = x^2 - 6$:

- (a) Find f(g(x)) and g(f(x))
- (b) Calculate f(g(2)) and g(f(2))
- (c) Solve f(g(x)) = 47
- (d) Find $(f \circ g)^{-1}(x)$

- 19. For $p(x) = \frac{6x-1}{4x+5}$ where $x \neq -\frac{5}{4}$:
 - (a) Find $p^{-1}(x)$
 - (b) Verify that $p(p^{-1}(x)) = x$
 - (c) State the domain and range of $p^{-1}(x)$
 - (d) Solve $p(x) = p^{-1}(x)$
- 20. Given f(x) = 11x 5 and $g(x) = \frac{4}{3x+2}$ where $x \neq -\frac{2}{3}$:
 - (a) Find $(f \circ g)(x)$ and state its domain
 - (b) Find $(g \circ f)(x)$ and state its domain
 - (c) Find $(f \circ g)^{-1}(x)$
 - (d) Verify your answer by showing $(f \circ g)((f \circ g)^{-1}(x)) = x$
- 21. The function $h(x) = x^2 + 18x + 12$ is defined for $x \ge -9$.
 - (a) Explain why the domain restriction is necessary for h^{-1} to exist
 - (b) Find $h^{-1}(x)$
 - (c) State the domain and range of $h^{-1}(x)$
 - (d) Sketch h(x) and $h^{-1}(x)$ on the same axes

Section F: Graphing Functions

- 22. Sketch the graphs of these functions, clearly showing key features:
 - (a) $y = x^3 12x^2 + 45x 50$
 - (b) $y = \frac{7x+3}{5x-4}$
 - (c) $y = |x^2 16x + 55|$
 - (d) $y = \frac{x^2 + 36}{x^2 4}$
- 23. For the rational function $f(x) = \frac{x^2 + 6x + 8}{x^2 36}$:
 - (a) Find the domain of f(x)
 - (b) Find the x and y intercepts
 - (c) Identify any vertical asymptotes
 - (d) Find the horizontal asymptote
 - (e) Sketch the graph of y = f(x)
- 24. Analyze the function $g(x) = \frac{8x^2 32}{x^2 + 3x 18}$:
 - (a) Factorize the numerator and denominator
 - (b) Simplify g(x) and state its domain
 - (c) Find any asymptotes
 - (d) Find the coordinates of any stationary points
 - (e) Sketch the graph of y = g(x)
- 25. For the polynomial $p(x) = x^4 12x^3 + 36x^2$:
 - (a) Factorize p(x) completely
 - (b) Find the roots and their multiplicities
 - (c) Determine the behavior at each root
 - (d) Find p'(x) and locate stationary points
 - (e) Sketch the graph of y = p(x)

Section G: Function Transformations

- 26. Given the function $f(x) = x^2$, describe the transformations and sketch:
 - (a) y = f(x+6) 2
 - (b) $y = -\frac{2}{3}f(x-4)$
 - (c) y = f(7x) + 8
 - (d) y = 6f(-x) 5
- 27. The graph of y = f(x) has vertex at (2, -4) and passes through (0, 0) and (4, 0). Find the vertex and two other points for:
 - (a) y = f(x) + 7
 - (b) y = f(x 5)
 - (c) y = 5f(x)
 - (d) y = f(6x)
 - (e) y = -f(x)
 - (f) y = f(-x)
- 28. Given that g(x) = |x + 6| 4:
 - (a) Describe the transformations applied to y = |x|
 - (b) State the vertex of the graph
 - (c) Find the range of g(x)
 - (d) Solve g(x) = 5
 - (e) Sketch the graph of y = g(x)
- 29. The function $h(x) = \csc x$ is transformed to $k(x) = 5\csc(3x + \frac{\pi}{2}) + 2$.
 - (a) Identify each transformation in the correct order
 - (b) State the period of k(x)
 - (c) Find the phase shift
 - (d) Find the vertical shift
 - (e) Find the vertical asymptotes in the interval $\left[0, \frac{2\pi}{3}\right]$
 - (f) Sketch one complete cycle of y = k(x)

Section H: Special Functions and Applications

- 30. For the exponential function $f(x) = 8^{x+3} 7$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Find the horizontal asymptote
 - (d) Solve f(x) = 57
 - (e) Find $f^{-1}(x)$ and state its domain and range
- 31. For the logarithmic function $g(x) = \log_7(5x+1) 3$:
 - (a) State the domain and range
 - (b) Find the x-intercept
 - (c) Find the vertical asymptote

- (d) Solve q(x) = 2
- (e) Express g(x) in terms of natural logarithms
- 32. A function is defined as $f(x) = \frac{hx+j}{kx+l}$ where $hl jk \neq 0$.
 - (a) Find the domain of f(x)
 - (b) Find $f^{-1}(x)$
 - (c) Show that $(f^{-1} \circ f)(x) = x$
 - (d) Find the condition for f to satisfy f(f(x)) = x (involution property)
- 33. The modulus function |x| can be written as: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
 - (a) Sketch y = |7x 3|
 - (b) Solve |7x 3| = 10
 - (c) Solve |7x 3| < 9
 - (d) Find the range of values for which $|7x 3| \ge 4$

Section I: Problem Solving and Applications

- 34. A parabolic satellite dish has a cross-section where the focus is 8 cm from the vertex. If the dish is 32 cm wide at the rim, find the depth.
 - (a) Set up a coordinate system with vertex at origin
 - (b) Use the standard form $x^2 = 4py$ where p = 8
 - (c) Find the depth when x = 16
 - (d) If the area of the cross-section is $A = \frac{2}{3}wd$ where w is width and d is depth, calculate the area
 - (e) State any assumptions made in your model
- 35. The efficiency E (as a percentage) of a solar panel depends on temperature T (in °C) according to: $E(T) = -0.5T^2 + 20T + 100$ for $0 \le T \le 50$
 - (a) Express E(T) in completed square form
 - (b) Find the temperature for maximum efficiency
 - (c) Calculate the maximum efficiency
 - (d) Determine the temperatures at which efficiency is 150%
 - (e) Find the efficiency at 30°C
- 36. A suspension bridge's cable follows the path: $y(x) = 0.01x^2 0.8x + 20$ meters, where x is horizontal distance from one end for $0 \le x \le 80$
 - (a) Find the lowest point of the cable
 - (b) Calculate the minimum height of the cable
 - (c) Determine where the cable is 18 meters high
 - (d) Find the height at the bridge's center (x = 40)
- 37. A function $f(x) = \frac{x^2 49}{x^2 + 25}$ models a transfer function in engineering.
 - (a) Find the domain and range of f(x)
 - (b) Determine any asymptotes and explain their engineering significance

- (c) Find the zeros of the transfer function
- (d) Analyze the behavior as $x \to \pm \infty$
- (e) Sketch the graph and discuss symmetry properties
- 38. Two functions are related by g(x) = f(7x + 3) 6 where $f(x) = x^2$.
 - (a) Find an explicit expression for g(x)
 - (b) Describe the sequence of transformations that map f to g
 - (c) Find the vertex of the parabola y = g(x)
 - (d) If f has domain [-6,3], find the domain of g
 - (e) Solve g(x) = f(x) and interpret the solutions

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$