A Level Mechanics Practice Test 4: Gravitational Fields

Instructions:

Answer all questions. Show your working clearly.
Calculators may be used unless stated otherwise.

Draw diagrams where appropriate to illustrate your solutions.

Time allowed: 2 hours 55 minutes

Section A: Gravitational Force and Field Fundamentals [35 marks]

Question 1 [15 marks] A space probe is designed to study the gravitational field between Earth and the Moon. Earth has mass 5.97×10^2 kg and the Moon has mass 7.35×10^{22} kg. They are separated by 3.84×10 m.

- (a) Calculate the gravitational force between Earth and the Moon. [4 marks]
- (b) Find the distance from Earth's center where the gravitational field strengths due to Earth and Moon are equal in magnitude but opposite in direction. [6 marks]
- (c) Calculate the gravitational field strength at this neutral point. [2 marks]
- (d) Determine the gravitational potential at this neutral point due to both Earth and Moon. [3 marks]

Question 2 [20 marks] Titan, Saturn's largest moon, has a mass of 1.35×10^{23} kg and a radius of 2.57×10 m.

- (a) Calculate the gravitational field strength on Titan's surface. [4 marks]
- (b) Find the gravitational field strength at a height of 1500 km above Titan's surface. [4 marks]
- (c) A lander with mass 850 kg is placed on Titan's surface. Calculate its weight. [3 marks]
- (d) At what height above Titan's surface would the gravitational field strength be 20% of its surface value? [6 marks]
- (e) Calculate the ratio of gravitational field strengths on Titan's surface compared to Earth's surface.

 [3 marks]

Section B: Gravitational Potential and Energy Analysis [40 marks]

Question 3 [18 marks]

- (a) Define gravitational potential energy and explain why it is considered negative. [4 marks]
- (b) Starting from the definition of work done against gravity, derive the expression U = -GMm/r for gravitational potential energy. [8 marks]

- (c) Show that the gravitational potential V = -GM/r follows from the potential energy expression. [3 marks]
- (d) Explain the physical significance of the negative sign in the gravitational potential expression. [3 marks]

Question 4 [22 marks] A lunar mission requires sending a spacecraft from Earth's surface to the Moon's surface.

- (a) Calculate the gravitational potential energy of a 5000 kg spacecraft on Earth's surface. [3 marks]
- (b) Find the gravitational potential energy of the spacecraft on the Moon's surface. [4 marks]
- (c) Calculate the change in potential energy for this journey, considering only Earth and Moon's gravitational fields. [3 marks]
- (d) Determine the minimum launch velocity required for the spacecraft to reach the Moon. [6 marks]
- (e) If the spacecraft is launched with velocity 12.0 km/s, calculate its velocity when it reaches the Moon's surface. [4 marks]
- (f) Calculate the energy required per kilogram of spacecraft for this mission. [2 marks]

Section C: Orbital Mechanics and Satellite Motion [50 marks]

Question 5 [25 marks]

- (a) For a satellite in circular orbit, explain what provides the centripetal force and derive the orbital velocity formula v = (GM/r). [6 marks]
- (b) Show that the orbital period is $T = 2(r^3/GM)$ and explain how this relates to Kepler's third law. [6 marks]
- (c) For a satellite in circular orbit, prove that the kinetic energy is exactly half the magnitude of the potential energy. [5 marks]
- (d) Derive the expression for the total energy of a satellite in circular orbit. [4 marks]
- (e) Explain why more energy is required to move a satellite to a higher orbit, even though it moves more slowly there. [4 marks]

Question 6 [25 marks] A telecommunications satellite needs to be placed in geostationary orbit, and then later moved to a higher orbit at 50,000 km altitude above Earth's surface.

- (a) Calculate the orbital radius and height above Earth's surface for geostationary orbit. [5 marks]
- (b) Find the orbital velocity in geostationary orbit. [3 marks]
- (c) Calculate the orbital velocity in the higher orbit at 50,000 km altitude. [4 marks]
- (d) Determine the orbital period in the higher orbit. [4 marks]
- (e) For a 3000 kg satellite, calculate the energy required to transfer it from geostationary orbit to the higher orbit. [6 marks]
- (f) Explain why geostationary satellites are useful for telecommunications but have limitations for global coverage. [3 marks]

Section D: Planetary Systems and Kepler's Laws [30 marks]

Question 7 [18 marks] Exoplanet Kepler-452b orbits its star at a distance of 1.55×10^{11} m with a period of 385 days. The star has a similar mass to our Sun.

- (a) Use Kepler's third law to calculate the mass of Kepler-452b's star. [6 marks]
- (b) Calculate the orbital velocity of Kepler-452b. [4 marks]
- (c) Compare this orbital velocity with Earth's orbital velocity around the Sun. [3 marks]
- (d) If another planet in this system orbits at 0.85×10^{11} m from the star, predict its orbital period. [5 marks]

Question 8 [12 marks] The Galilean moons of Jupiter provide an excellent test of Kepler's laws. Io orbits at 4.22×10 m with period 1.77 days, while Callisto orbits at 1.88×10 m.

- (a) Use Io's orbital data to calculate Jupiter's mass. [5 marks]
- (b) Predict Callisto's orbital period using Kepler's third law. [4 marks]
- (c) Calculate and compare the orbital velocities of Io and Callisto. [3 marks]

Section E: Escape Velocity and Energy Transfer [25 marks]

Question 9 [15 marks]

- (a) Define escape velocity and derive its expression starting from energy conservation principles. [6 marks]
- (b) Calculate the escape velocity from Mercury's surface (mass 3.30×10^{23} kg, radius 2.44×10 m). [3 marks]
- (c) Calculate the escape velocity from Neptune's surface (mass 1.02×10^2 kg, radius 2.46×10 m). [3 marks]
- (d) Explain why it would be easier to launch a spacecraft from Mercury than from Neptune, despite Mercury being closer to the Sun. [3 marks]

Question 10 [10 marks] A probe is launched from Earth with initial velocity 9.5 km/s to study the upper atmosphere.

- (a) Calculate whether this probe will escape Earth's gravitational field. [3 marks]
- (b) Find the maximum altitude reached by the probe above Earth's surface. [5 marks]
- (c) Calculate the probe's velocity when it returns to an altitude of 2000 km during its descent. [2 marks]

Section F: Advanced Gravitational Field Applications [30 marks]

Question 11 [18 marks] A proposed asteroid mining mission involves placing a space station at the L2 Lagrange point beyond the Moon's orbit, where gravitational forces from Earth and Moon combine with centrifugal effects to create a stable point.

- (a) Explain the concept of Lagrange points and why they are useful for space missions. [4 marks]
- (b) The L2 point is approximately 1.5×10 m from Earth's center, beyond the Moon. Calculate the gravitational field strength at L2 due to Earth alone. [3 marks]

- (c) Calculate the gravitational field strength at L2 due to the Moon alone. [4 marks]
- (d) Find the gravitational potential at L2 due to both Earth and Moon. [4 marks]
- (e) Calculate the energy required to move a 10,000 kg space station from Earth's surface to the L2 point. [3 marks]

Question 12 [12 marks] Tidal forces arise from gravitational field gradients. Consider a satellite in low Earth orbit experiencing tidal effects.

- (a) Explain what causes tidal forces in terms of gravitational field variations. [3 marks]
- (b) A 100 m long satellite orbits Earth at 400 km altitude. Calculate the difference in gravitational field strength between the Earth-facing end and the space-facing end of the satellite. [6 marks]
- (c) Explain why tidal forces become more significant for larger objects or closer orbits. [3 marks]

Physics Data and Formulae

Gravitational Force and Field:

Newton's Law: $F = \frac{Gm_1m_2}{r^2}$ Field strength: $g = \frac{F}{m} = \frac{GM}{r^2}$ Field-potential relation: $g = -\frac{dV}{dr}$

Gravitational Potential and Energy:

Potential: $V = -\frac{GM}{r}$ Potential energy: $U = mV = -\frac{GMm}{r}$ Work done: $W = m\Delta V = \Delta U$

Orbital Motion:

Circular orbital velocity: $v = \sqrt{\frac{GM}{r}}$ Orbital period: $T = 2\pi\sqrt{\frac{r^3}{GM}}$ Kepler's Third Law: $\frac{T_1^2}{T_2^2} = \frac{r_3^3}{r_2^3}$ Escape velocity: $v_e = \sqrt{\frac{2GM}{r}}$

Energy in Circular Orbits:

Kinetic energy: $E_k = \frac{1}{2}mv^2 = \frac{GMm}{2r}$ Potential energy: $E_p = -\frac{GMm}{r}$ Total energy: $E = E_k + E_p = -\frac{GMm}{2r}$

Circular Motion:

Centripetal force: $F_c = \frac{mv^2}{r}$ Centripetal acceleration: $a_c = \frac{v^2}{r}$ Angular velocity: $\omega = \frac{2\pi}{T}$

Physical Constants:

Gravitational constant: $G=6.67\times 10^{-11}~\mathrm{Nm^2/kg^2}$ Earth's mass: $M_E=5.97\times 10^{24}~\mathrm{kg}$ Earth's radius: $R_E=6.37\times 10^6~\mathrm{m}$ Moon's mass: $M_M=7.35\times 10^{22}~\mathrm{kg}$ Moon's radius: $R_M=1.74\times 10^6~\mathrm{m}$ Earth-Moon distance: $3.84\times 10^8~\mathrm{m}$ Sun's mass: $M_S=1.99\times 10^{30}$ kg Earth-Sun distance: 1.50×10^{11} m Standard gravity: g=9.81 m/s²

END OF TEST

Total marks: 210

Grade boundaries: A* 189, A 168, B 147, C 126, D 105, E 84

For more resources and practice materials, visit: stepupmaths.co.uk