A Level Statistics Practice Test 5: Data Collection

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Draw diagrams where appropriate to illustrate your solutions. Time allowed: 3 hours

Section A: Advanced Statistical Measures [25 marks]

- 1. [8 marks] Define and explain advanced measures of central tendency and spread:
 - (a) Define the geometric mean and explain when it's more appropriate than arithmetic mean.
 - (b) Explain weighted averages and provide a practical example.
 - (c) Define variance and standard deviation, explaining their relationship.
 - (d) Describe standardized scores (z-scores) and their interpretation.
 - 2. [10 marks] A company has three departments with the following salary data:

Department	Number of Employees	Average Salary (£)
Sales	25	32,000
Technical	15	45,000
Management	10	65,000

Additional data for Technical department salaries: Standard deviation = £8,000

- (a) Calculate the overall weighted mean salary for the company.
- (b) If a Technical department employee earns £53,000, calculate their z-score.
- (c) Interpret the meaning of this z-score.
- (d) Calculate the total salary bill for each department.
- (e) Determine what percentage of the total wage bill goes to Management.
 - 3. [7 marks] Investment returns over 5 years are: 8
- (a) Calculate the arithmetic mean return.
- (b) Calculate the geometric mean return.
- (c) Explain why the geometric mean is more appropriate for investment returns.
- (d) If you invested £1000 initially, calculate the final value using the geometric mean.

Section B: Data Transformation and Standardization [30 marks]

- 4. [12 marks] Explain data transformation techniques:
 - (a) Define linear transformation and explain its effect on mean and standard deviation.
 - (b) Describe logarithmic transformation and when it's used.
 - (c) Explain standardization (z-score transformation) and its benefits.
 - (d) Describe rank transformation and its applications.
- 5. [18 marks] A dataset of house prices (£000s) has been collected: 180, 195, 210, 225, 240, 255, 270, 285, 300, 320, 340, 380, 450, 520, 680
 - (a) Calculate the mean and standard deviation of the original data.
 - (b) Apply a linear transformation: New price = (Original price 200) \div 50.
 - (c) Calculate the mean and standard deviation of the transformed data.
 - (d) Verify the relationship between original and transformed statistics.
 - (e) Identify any outliers using the 2-standard deviation rule on original data.
 - (f) Transform the data to z-scores and identify which houses are more than 1.5 standard deviations from the mean.
 - (g) Calculate the 5-number summary for the original data.
 - (h) Create a box plot and identify outliers using the IQR method.
 - (i) Compare outlier detection methods and comment on their effectiveness.

Section C: Research Ethics and Data Protection [35 marks]

- 6. [15 marks] Explain ethical considerations in data collection and research:
 - (a) Define informed consent and explain its importance in research.
 - (b) Describe confidentiality and anonymity in data collection.
 - (c) Explain the principle of "do no harm" in statistical research.
 - (d) Describe data protection requirements for personal information.
 - (e) Explain voluntary participation and the right to withdraw from studies.
 - 7. [20 marks] Evaluate the ethical and practical considerations in these research scenarios:
- **Scenario 1:** A social media company analyzes user behavior patterns from millions of accounts to improve their recommendation algorithm, using posts, likes, and browsing history.
- **Scenario 2:** A medical researcher studies the effectiveness of a new treatment by tracking patient recovery times, requiring access to detailed medical records.
- **Scenario 3:** A school district evaluates teacher performance using student test scores, classroom observations, and parent feedback surveys.
- **Scenario 4:** A marketing company conducts surveys about shopping habits by offering gift vouchers to participants, collecting income and spending data.

For each scenario, address:

(a) Key ethical issues and potential risks to participants.

- (b) Data protection and privacy concerns.
- (c) Informed consent requirements and challenges.
- (d) Potential benefits versus risks of the research.
- (e) Recommendations for ethical data collection practices.

Answer Space

Use this space for your working and answers.

Formulae and Key Concepts

Advanced Means:

Advanced Means: Arithmetic Mean: $\bar{x} = \frac{\sum x}{n}$ Weighted Mean: $\bar{x}_w = \frac{\sum w_i x_i}{\sum w_i}$ Geometric Mean: $\bar{x}_g = \sqrt[n]{x_1 \times x_2 \times \ldots \times x_n}$ For percentages: $\bar{x}_g = \sqrt[n]{(1+r_1)(1+r_2)\ldots(1+r_n)} - 1$

Measures of Spread:

Variance: $s^2 = \frac{\sum (x-\bar{x})^2}{n-1}$ Standard Deviation: $s = \sqrt{s^2}$ Range: Maximum - Minimum IQR: Q3 - Q1

Standardization:

Z-score: $z = \frac{x - \bar{x}}{s}$ Interpretation: Number of standard deviations from mean |z| > 2: Potential outlier, |z| > 3: Likely outlier

Linear Transformation:

If
$$Y = aX + b$$
, then:
 $\bar{y} = a\bar{x} + b$
 $s_y = |a| \times s_x$

Outlier Detection:

Z-score method: |z| > 2 or |z| > 3IQR method: $\langle Q1 - 1.5 \times IQR \text{ or } \rangle Q3 + 1.5 \times IQR$ Modified z-score using median and MAD

Box Plot Components:

Five-number summary: Min, Q1, Median, Q3, Max

Whiskers extend to furthest non-outlier Outliers plotted separately

Research Ethics Principles:

Autonomy: Respect for persons and their decisions Beneficence: Maximizing benefits and minimizing harm Justice: Fair distribution of benefits and burdens

Non-maleficence: "Do no harm"

Data Protection Requirements:

Lawful basis for processing
Data minimization principle
Accuracy and timeliness
Storage limitation
Security and confidentiality
Accountability and transparency

Informed Consent Elements:

Purpose of research clearly explained Procedures and time commitments Risks and benefits disclosed Voluntary participation emphasized Right to withdraw without penalty Contact information provided

END OF TEST

Total marks: 90

For more resources and practice materials, visit: stepupmaths.co.uk