A Level Pure Mathematics Practice Test 5: Algebra and Functions

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 2 hours

Section A: Algebraic Manipulation

1. Simplify these expressions:

(a)
$$\frac{x^2-49}{x^2+14x+49}$$

(b)
$$\frac{6x^2-24}{x^2-2x-8}$$

(c)
$$\frac{x^3-216}{x^2-36}$$

(a)
$$\frac{x^2 - 49}{x^2 + 14x + 49}$$
(b)
$$\frac{6x^2 - 24}{x^2 - 2x - 8}$$
(c)
$$\frac{x^3 - 216}{x^2 - 36}$$
(d)
$$\frac{x^4 - 1296}{x^2 + 6x - 72}$$

2. Factorize completely:

(a)
$$x^3 + 15x^2 + 75x + 125$$

(b)
$$216x^3 - 343$$

(c)
$$x^8 - 256$$

(d)
$$x^{15} - 1$$

(e)
$$x^4 + 18x^2 + 81$$

(f)
$$x^3 - 6x^2 + 11x - 30$$

3. Express as single fractions in simplest form:

(a)
$$\frac{6}{x-3} + \frac{4}{x+5}$$

(b)
$$\frac{5x}{x^2-25} - \frac{2}{x+5}$$

(c)
$$\frac{3x+1}{x^2-4x+3} + \frac{x-5}{x^2+x-20}$$

(d)
$$\frac{5}{x+3} - \frac{4}{x-1} + \frac{6}{x^2+2x-3}$$

4. Use the binomial theorem to expand:

(a)
$$(6x-1)^4$$

(b)
$$(2x + \frac{3}{2x})^6$$

(c)
$$(4-x)^8$$
, and find the coefficient of x^6

(d) Find the term containing
$$x^3$$
 in the expansion of $(x^5 - \frac{2}{x^3})^9$

5. Simplify using laws of indices:

(a)
$$\frac{11^{2x+1} \cdot 121^{x-3}}{1331^{x-1}}$$

- (b) $\frac{243^{x+2} \cdot 81^{2x}}{729^{x+1}}$
- (c) $(x^{\frac{5}{6}})^{\frac{6}{7}} \cdot x^{-\frac{4}{5}}$
- (d) $\frac{(8x)^2 \cdot (3x^4)^2}{24x^9}$

Section B: Linear and Quadratic Equations

- 6. Solve these equations:
 - (a) $\frac{6x-5}{7} \frac{4x+1}{3} = \frac{2}{21}$
 - (b) $\frac{5x}{x+2} = \frac{7}{x-4}$
 - (c) $\sqrt{6x-5} = 4x-7$
 - (d) $\frac{5}{x-3} \frac{3}{x+4} = \frac{2}{7}$
- 7. Solve these quadratic equations, leaving answers in exact form where appropriate:
 - (a) $7x^2 13x + 4 = 0$
 - (b) $x^2 12x + 11 = 0$
 - (c) $6x^2 = 11x + 2$
 - (d) $(6x-5)^2 = 4(2x+3)$
- 8. For the quadratic equation $5x^2 + (4k-3)x + 3k 1 = 0$:
 - (a) Find the discriminant in terms of k
 - (b) Find the values of k for which the equation has equal roots
 - (c) Find the values of k for which the equation has no real roots
 - (d) When k = 2, find the sum and product of the roots
- 9. The quadratic $ux^2 + vx + w = 0$ has roots α and β .
 - (a) Express $\alpha + \beta$ and $\alpha\beta$ in terms of u, v, and w
 - (b) Find a quadratic equation with roots $\alpha + 4$ and $\beta + 4$
 - (c) Find a quadratic equation with roots $2\alpha + 1$ and $2\beta + 1$
 - (d) If $\alpha^2 + \beta^2 = 26$ and $\alpha + \beta = 8$, find $\alpha\beta$

Section C: Cubic and Higher Order Equations

- 10. Solve these cubic equations:
 - (a) $x^3 9x^2 + 26x 24 = 0$
 - (b) $x^3 + 5x^2 2x 24 = 0$
 - (c) $8x^3 6x^2 23x + 15 = 0$
 - (d) $x^3 15x^2 + 74x 120 = 0$
- 11. Given that x = 4 is a root of $x^3 7x^2 + bx 20 = 0$:
 - (a) Find the value of b
 - (b) If one of the other roots is 1, find the third root
 - (c) Write the equation in fully factored form
 - (d) Verify by expanding your factored form
- 12. Solve these quartic equations:

(a)
$$x^4 - 25x^2 + 144 = 0$$

(b)
$$x^4 - 14x^2 + 45 = 0$$

(c)
$$(x^2 - 4x)^2 - 3(x^2 - 4x) - 10 = 0$$

(d)
$$x^4 - 4x^3 - 7x^2 + 22x + 24 = 0$$
 (given that $x = -1$ is a root)

13. Use the substitution $z = x + \frac{4}{x}$ to solve:

(a)
$$x^2 + \frac{16}{x^2} = 17$$

(b)
$$3x^2 - 5x + \frac{20}{x} - \frac{12}{x^2} = 0$$

Section D: Functions - Definition and Notation

- 14. For the function $f(x) = \frac{6x-5}{4x+3}$ where $x \neq -\frac{3}{4}$:
 - (a) Find f(0), f(2), and f(-1)
 - (b) Solve f(x) = 5
 - (c) Find the value of x for which f(x) is undefined
 - (d) Find the range of f(x)
- 15. Given $g(x) = x^2 14x + 45$:
 - (a) Express g(x) in the form $(x-m)^2 + n$
 - (b) State the minimum value of g(x) and the value of x at which it occurs
 - (c) Solve g(x) = 0
 - (d) Find the range of g(x)
- 16. For $h(x) = \sqrt{49 x^2}$:
 - (a) Find the domain of h(x)
 - (b) Find the range of h(x)
 - (c) Sketch the graph of y = h(x)
 - (d) Solve h(x) = 6

17. Define
$$k(x) = \begin{cases} 4x^2 + 2 & \text{if } x < -2\\ 3x - 4 & \text{if } -2 \le x \le 3\\ 5 & \text{if } x > 3 \end{cases}$$

- (a) Find k(-3), k(-2), k(1), and k(4)
- (b) Is k(x) continuous at x = -2? Justify your answer
- (c) Is k(x) continuous at x = 3? Justify your answer
- (d) Sketch the graph of y = k(x)

Section E: Composite and Inverse Functions

- 18. Given f(x) = 8x 3 and $g(x) = x^2 + 5$:
 - (a) Find f(g(x)) and g(f(x))
 - (b) Calculate f(g(-1)) and g(f(-1))
 - (c) Solve f(g(x)) = 37
 - (d) Find $(f \circ g)^{-1}(x)$

- 19. For $p(x) = \frac{5x+2}{3x-4}$ where $x \neq \frac{4}{3}$:
 - (a) Find $p^{-1}(x)$
 - (b) Verify that $p(p^{-1}(x)) = x$
 - (c) State the domain and range of $p^{-1}(x)$
 - (d) Solve $p(x) = p^{-1}(x)$
- 20. Given f(x) = 9x + 4 and $g(x) = \frac{1}{2x-3}$ where $x \neq \frac{3}{2}$:
 - (a) Find $(f \circ g)(x)$ and state its domain
 - (b) Find $(g \circ f)(x)$ and state its domain
 - (c) Find $(f \circ g)^{-1}(x)$
 - (d) Verify your answer by showing $(f \circ g)((f \circ g)^{-1}(x)) = x$
- 21. The function $h(x) = x^2 + 16x + 7$ is defined for $x \ge -8$.
 - (a) Explain why the domain restriction is necessary for h^{-1} to exist
 - (b) Find $h^{-1}(x)$
 - (c) State the domain and range of $h^{-1}(x)$
 - (d) Sketch h(x) and $h^{-1}(x)$ on the same axes

Section F: Graphing Functions

- 22. Sketch the graphs of these functions, clearly showing key features:
 - (a) $y = x^3 9x^2 + 24x 16$
 - (b) $y = \frac{6x-5}{4x+3}$
 - (c) $y = |x^2 14x + 45|$
 - (d) $y = \frac{x^2 + 25}{x^2 9}$
- 23. For the rational function $f(x) = \frac{x^2 5x + 6}{x^2 25}$:
 - (a) Find the domain of f(x)
 - (b) Find the x and y intercepts
 - (c) Identify any vertical asymptotes
 - (d) Find the horizontal asymptote
 - (e) Sketch the graph of y = f(x)
- 24. Analyze the function $g(x) = \frac{7x^2 28}{x^2 4x 12}$:
 - (a) Factorize the numerator and denominator
 - (b) Simplify g(x) and state its domain
 - (c) Find any asymptotes
 - (d) Find the coordinates of any stationary points
 - (e) Sketch the graph of y = g(x)
- 25. For the polynomial $p(x) = x^4 10x^3 + 25x^2$:
 - (a) Factorize p(x) completely
 - (b) Find the roots and their multiplicities
 - (c) Determine the behavior at each root
 - (d) Find p'(x) and locate stationary points
 - (e) Sketch the graph of y = p(x)

Section G: Function Transformations

- 26. Given the function $f(x) = x^2$, describe the transformations and sketch:
 - (a) y = f(x-5) + 4
 - (b) $y = -\frac{3}{2}f(x+3)$
 - (c) y = f(6x) 7
 - (d) y = 5f(-x) + 3
- 27. The graph of y = f(x) has vertex at (-1,5) and passes through (1,9) and (-3,9). Find the vertex and two other points for:
 - (a) y = f(x) + 6
 - (b) y = f(x 4)
 - (c) y = 3f(x)
 - (d) y = f(5x)
 - (e) y = -f(x)
 - (f) y = f(-x)
- 28. Given that g(x) = |x 5| + 3:
 - (a) Describe the transformations applied to y = |x|
 - (b) State the vertex of the graph
 - (c) Find the range of g(x)
 - (d) Solve g(x) = 8
 - (e) Sketch the graph of y = g(x)
- 29. The function $h(x) = \sec x$ is transformed to $k(x) = 4\sec(2x \frac{\pi}{3}) 1$.
 - (a) Identify each transformation in the correct order
 - (b) State the period of k(x)
 - (c) Find the phase shift
 - (d) Find the vertical shift
 - (e) Find the vertical asymptotes in the interval $[0, 2\pi]$
 - (f) Sketch one complete cycle of y = k(x)

Section H: Special Functions and Applications

- 30. For the exponential function $f(x) = 6^{x-2} + 3$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Find the horizontal asymptote
 - (d) Solve f(x) = 39
 - (e) Find $f^{-1}(x)$ and state its domain and range
- 31. For the logarithmic function $g(x) = \log_6(4x 3) + 1$:
 - (a) State the domain and range
 - (b) Find the x-intercept
 - (c) Find the vertical asymptote

- (d) Solve g(x) = 4
- (e) Express g(x) in terms of natural logarithms
- 32. A function is defined as $f(x) = \frac{dx+e}{fx+g}$ where $dg ef \neq 0$.
 - (a) Find the domain of f(x)
 - (b) Find $f^{-1}(x)$
 - (c) Show that $(f^{-1} \circ f)(x) = x$
 - (d) Determine when f(x) = -x and interpret geometrically
- 33. The modulus function |x| can be written as: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
 - (a) Sketch y = |6x + 1|
 - (b) Solve |6x + 1| = 11
 - (c) Solve $|6x + 1| \le 8$
 - (d) Find the range of values for which |6x + 1| > 5

Section I: Problem Solving and Applications

- 34. A Norman window consists of a rectangle surmounted by a semicircle. The perimeter is 24 meters. Let x be the width of the rectangle.
 - (a) Express the height of the rectangle in terms of x
 - (b) Show that the area $A = x(12 \frac{x}{2} \frac{\pi x}{4})$
 - (c) Find the value of x that maximizes the area
 - (d) Calculate the maximum area
 - (e) State the domain of the function in this context
- 35. The temperature T (in degrees Celsius) of a cooling object after t minutes is given by: $T(t) = 3t^2 36t + 120$
 - (a) Express T(t) in completed square form
 - (b) Find when the object reaches its minimum temperature
 - (c) Calculate the minimum temperature
 - (d) Determine when the object returns to 90°C
 - (e) Find the temperature after 8 minutes
- 36. A population of bacteria grows according to the function: $P(t) = -t^2 + 14t + 40$ thousand, where t is time in hours for $0 \le t \le 20$
 - (a) Find when the population reaches its maximum
 - (b) Calculate the maximum population
 - (c) Determine when the population drops to 75 thousand
 - (d) Find the population after 10 hours
- 37. A function $f(x) = \frac{x^2 36}{x^2 + 16}$ models a filter response.
 - (a) Find the domain and range of f(x)
 - (b) Determine any asymptotes and explain their significance
 - (c) Find when f(x) = 0

- (d) Analyze the behavior as $x \to \pm \infty$
- (e) Sketch the graph and identify any symmetry
- 38. Two functions are related by g(x) = f(6x 2) + 5 where $f(x) = x^2$.
 - (a) Find an explicit expression for g(x)
 - (b) Describe the transformations that map f to g
 - (c) Find the vertex of the parabola y = g(x)
 - (d) If f has domain [-5, 2], find the domain of g
 - (e) Solve g(x) = f(x) and interpret the solutions geometrically

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$