A Level Pure Mathematics Practice Test 6: Integration

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Basic Integration - Polynomials

1. Find these indefinite integrals:

(a)
$$\int (8x^2 + 3x - 9) dx$$

(b)
$$\int (6x^3 - 4x^2 + 7x + 5) dx$$

(c)
$$\int (7x^4 - 5x + 9) dx$$

(d)
$$\int (9x^2 - \frac{2}{7}x + 4) dx$$

(e)
$$\int (6x+5)^2 dx$$

(f)
$$\int (5x-3)(2x+4) dx$$

2. Integrate these functions involving negative and fractional powers:

(a)
$$\int x^{-7} dx$$

(b)
$$\int (7x^{-1} + 4x^{\frac{5}{6}}) dx$$

(c)
$$\int \frac{6}{x^8} dx$$

(d)
$$\int \sqrt[7]{x} dx$$

(e)
$$\int \frac{7}{\sqrt{x}} dx$$

(f)
$$\int (5x^{\frac{8}{3}} - 6x^{-\frac{5}{6}}) dx$$

3. Find these integrals by expanding first:

(a)
$$\int \frac{6x^3 - 4x^2 + 5x}{x} dx$$

(b)
$$\int \frac{x^2 - 49}{x} \, dx$$

(c)
$$\int \frac{(4x-3)^2}{x} dx$$

(d)
$$\int \frac{5x^3 + 64}{r^2} dx$$

4. Evaluate these definite integrals:

(a)
$$\int_2^4 (4x^2 + 3x - 2) dx$$

(b)
$$\int_{1}^{6} (7x-4) dx$$

(c)
$$\int_{-2}^{3} x^3 dx$$

(d)
$$\int_9^{36} \sqrt{x} \, dx$$

- 5. Find the function f(x) given:
 - (a) $f'(x) = 12x^2 + 9x 7$ and f(0) = 9
 - (b) f'(x) = 16x 7 and f(1) = 15
 - (c) f''(x) = 14x 12, f'(0) = 6, and f(0) = 8
 - (d) $f'(x) = \frac{6}{x^7}$ for x > 0 and f(1) = 5

Section B: Integration of Standard Functions

- 6. Integrate these exponential and logarithmic functions:
 - (a) $\int 11e^x dx$
 - (b) $\int 12e^x dx$
 - (c) $\int e^{7x} dx$
 - (d) $\int e^{-6x} dx$
 - (e) $\int \frac{7}{x} dx$ for x > 0
 - (f) $\int \frac{9}{x} dx$
- 7. Integrate these trigonometric functions:
 - (a) $\int 11 \sin x \, dx$
 - (b) $\int 10 \cos x \, dx$
 - (c) $\int 12 \sin x \, dx$
 - (d) $\int 7\cos x \, dx$
 - (e) $\int 7 \sec^2 x \, dx$
 - (f) $\int 6\csc^2 x \, dx$
- 8. Find these integrals:
 - (a) $\int (6\sin x 5\cos x) \, dx$
 - (b) $\int (7e^x + 4x^3) dx$
 - (c) $\int (6e^x + 7\cos x) \, dx$
 - (d) $\int \left(\frac{6}{x} 5x\right) dx$ for x > 0
 - (e) $\int (7\sin x + 5e^{-x}) dx$
 - (f) $\int \left(6x^2 \frac{7}{r^2}\right) dx$ for x > 0
- 9. Evaluate these definite integrals:
 - (a) $\int_0^{6\pi} \cos x \, dx$
 - (b) $\int_0^{\frac{\pi}{5}} \sin x \, dx$
 - (c) $\int_0^6 e^x \, dx$
 - (d) $\int_{1}^{e^{6}} \frac{1}{x} dx$
 - (e) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec^2 x \, dx$
 - (f) $\int_0^{\ln 7} e^{-x} dx$
- 10. Find the exact values:
 - (a) $\int_0^{\frac{\pi}{6}} 7\cos x \, dx$
 - $\text{(b) } \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x \, dx$
 - (c) $\int_0^{\ln 7} 5e^x dx$
 - (d) $\int_{1}^{e^{5}} \frac{7}{x} dx$

Section C: Integration by Substitution

- 11. Use substitution to find these integrals:
 - (a) $\int (7x-4)^6 dx$
 - (b) $\int (5x+6)^5 dx$
 - (c) $\int x(6x^2-5)^4 dx$
 - (d) $\int x\sqrt{5x^2+7}\,dx$
 - (e) $\int \frac{6x}{5x^2+4} \, dx$
 - (f) $\int \frac{7x}{(5x^2-2)^2} dx$
- 12. Find these integrals using appropriate substitutions:
 - (a) $\int \sin(7x-4) dx$
 - (b) $\int \cos(5x + \frac{\pi}{5}) \, dx$
 - (c) $\int e^{7x-5} dx$
 - (d) $\int e^{-7x} dx$
 - (e) $\int \frac{1}{7x+4} \, dx$
 - (f) $\int \frac{6}{5x-11} \, dx$
- 13. Use substitution for these more complex integrals:
 - (a) $\int x^2 (4x^3 9)^6 dx$
 - (b) $\int \frac{x^2}{\sqrt{5x^3+4}} \, dx$
 - (c) $\int xe^{6x^2} dx$
 - (d) $\int \frac{\ln x}{6x} dx$
 - (e) $\int \sin 6x \cos 5x \, dx$
 - (f) $\int \csc 3x \cot 3x \, dx$
- 14. Evaluate these definite integrals using substitution:
 - (a) $\int_0^4 x(3x^2-4)^4 dx$
 - (b) $\int_0^{\frac{\pi}{10}} \sin 6x \cos 4x \, dx$
 - (c) $\int_3^5 \frac{5x}{4x^2+3} dx$
 - (d) $\int_0^4 x e^{5x^2} dx$
- 15. Find these integrals by recognizing the derivative pattern:
 - (a) $\int \frac{12x-5}{6x^2-5x+3} dx$
 - (b) $\int \frac{15x^2+10}{5x^3+10x-4} dx$
 - (c) $\int \frac{6e^x}{e^x+5} dx$
 - (d) $\int \frac{5\cos x}{\sin x} \, dx$

Section D: Integration by Parts

- 16. Use integration by parts to find:
 - (a) $\int 6xe^x dx$
 - (b) $\int 5x \sin x \, dx$
 - (c) $\int 5x \cos x \, dx$
 - (d) $\int x^2 e^{6x} dx$
 - (e) $\int 6x \ln x \, dx$
 - (f) $\int e^x \sin 5x \, dx$
- 17. Apply integration by parts to:
 - (a) $\int 6 \ln x \, dx$
 - (b) $\int x^6 \ln x \, dx$
 - (c) $\int 5x \ln x \, dx$
 - (d) $\int \ln(6x-3) dx$
 - (e) $\int 4x \sin^{-1} x \, dx$
 - (f) $\int x^2 \sin 5x \, dx$
- 18. Find these integrals that may require multiple applications:
 - (a) $\int x^2 e^{-6x} dx$
 - (b) $\int x^2 \cos 5x \, dx$
 - (c) $\int e^{6x} \cos 5x \, dx$
 - (d) $\int e^{6x} \sin 5x \, dx$
 - (e) $\int \cos(\ln 5x) dx$
 - (f) $\int x^3 e^{6x} dx$
- 19. Evaluate these definite integrals:
 - (a) $\int_0^6 x e^x dx$
 - (b) $\int_0^{\frac{\pi}{5}} x \sin x \, dx$
 - (c) $\int_{1}^{e^6} x \ln x \, dx$
 - (d) $\int_0^{\frac{\pi}{10}} x \cos 5x \, dx$
- 20. Prove these reduction formulas using integration by parts:
 - (a) $I_n = \int x^n e^{6x} dx = \frac{x^n e^{6x}}{6} \frac{n}{6} I_{n-1}$
 - (b) $I_n = \int \csc^n x \, dx = -\frac{\csc^{n-2} x \cot x}{n-1} + \frac{n-2}{n-1} I_{n-2}$ for $n \ge 2$
 - (c) Use the first formula to find $\int x^6 e^{6x} dx$

Section E: Area Under Curves

- 21. Find the area under these curves:
 - (a) $y = 6x^2$ from x = 0 to x = 4
 - (b) y = 7x 3 from x = 1 to x = 4
 - (c) $y = x^3 5x$ from x = 0 to x = 3
 - (d) $y = 5 \sin x$ from x = 0 to $x = \frac{\pi}{5}$

- 22. Calculate the area between the curve and the x-axis:
 - (a) $y = x^2 36$ from x = -6 to x = 6
 - (b) $y = x^3 25x$ from x = -5 to x = 5
 - (c) $y = 5\cos x$ from x = 0 to $x = 2\pi$
 - (d) $y = e^x 6$ from x = 0 to $x = \ln 7$
- 23. Find the area between these curves:
 - (a) $y = 6x^2$ and y = 24 from x = 0 to x = 2
 - (b) $y = x^2$ and y = 6x 5 from x = 1 to x = 5
 - (c) $y = \sin 5x$ and $y = \cos 4x$ from x = 0 to $x = \frac{\pi}{10}$
 - (d) $y = 5e^x$ and y = 10 from x = 0 to $x = \ln 2$
- 24. Find the total area enclosed by:
 - (a) $y = x^2 36$ and the x-axis
 - (b) $y = x^3 49x$ and the x-axis
 - (c) $y = 5 \sin x$ and y = 0 from x = 0 to $x = 2\pi$
 - (d) $y = x^2 + 6x 7$ and the x-axis
- 25. A region is bounded by $y = 6x^2$, y = 0, x = 3, and x = 5.
 - (a) Calculate the area of the region
 - (b) Find the x-coordinate of the centroid
 - (c) Calculate the moment about the y-axis
 - (d) Find the average value of $y = 6x^2$ over [3, 5]

Section F: Fundamental Theorem of Calculus

- 26. Use the fundamental theorem to evaluate:
 - (a) $\frac{d}{dx} \int_0^x 6t^2 dt$
 - (b) $\frac{d}{dx} \int_6^x \sin t \, dt$
 - (c) $\frac{d}{dx} \int_0^{6x} e^t dt$
 - (d) $\frac{d}{dx} \int_{5x}^{x^2} \cos t \, dt$
- 27. Find these derivatives:
 - (a) $\frac{d}{dx} \int_0^x \sqrt{36 + t^2} \, dt$
 - (b) $\frac{d}{dx} \int_x^7 \frac{6}{t} dt$
 - (c) $\frac{d}{dx} \int_{\sin 5x}^{\cos 4x} t^5 dt$
 - (d) $\frac{d}{dx} \int_0^{x^5} \sin(t^6) dt$
- 28. Given $M(x) = \int_5^x f(t) dt$ where f is continuous:
 - (a) Prove that M'(x) = f(x)
 - (b) If $f(x) = 6x^2 5$, find M(x)
 - (c) Verify that M'(x) = f(x) for your answer
 - (d) Calculate M(7)-M(6) and interpret geometrically

- 29. Solve these differential equations using antiderivatives:
 - (a) $\frac{dy}{dx} = 12x^3 + 10x 6$ with y(0) = 7
 - (b) $\frac{dy}{dx} = 6e^x \sin x \text{ with } y(0) = 5$
 - (c) $\frac{d^2y}{dx^2} = 16x + 14$ with y'(0) = 6 and y(0) = 5
 - (d) $\frac{dy}{dx} = \frac{6}{x}$ with y(1) = 7
- 30. For the function $m(x) = \int_6^x \frac{1}{t} dt$:
 - (a) Find m'(x)
 - (b) Show that m(xy) = m(x) + m(y) for x, y > 0
 - (c) Prove that $m(x^n) = n \cdot m(x)$ for x > 0 and integer n
 - (d) Express m(x) in terms of elementary functions

Section G: Volumes of Revolution

- 31. Find the volume when these curves are rotated about the x-axis:
 - (a) y = 6x from x = 0 to x = 4
 - (b) $y = 5x^2$ from x = 0 to x = 4
 - (c) $y = \sqrt{6x} \text{ from } x = 0 \text{ to } x = 6$
 - (d) $y = e^{6x}$ from x = 0 to x = 1
- 32. Calculate volumes of revolution about the x-axis:
 - (a) y = 5x 1 from x = 0 to x = 4
 - (b) $y = x^2 5$ from x = -3 to x = 3
 - (c) $y = 5 \sin x$ from x = 0 to $x = \frac{\pi}{4}$
 - (d) $y = \frac{6}{x}$ from x = 1 to x = 6
- 33. Find volumes when rotated about the y-axis:
 - (a) $x = 6y^2$ from y = 0 to y = 3
 - (b) $x = \sqrt{6y} \text{ from } y = 0 \text{ to } y = 6$
 - (c) $x = e^{6y}$ from y = 0 to y = 1
 - (d) $x = 6 \ln y$ from y = 1 to $y = e^6$
- 34. Use the washer method to find volumes:
 - (a) Region between $y = 5x^2$ and y = 20 rotated about x-axis
 - (b) Region between y = 6x and $y = x^2$ rotated about x-axis
 - (c) Region between $y = 5e^x$ and y = 6 from x = 0 to $x = \ln(\frac{6}{5})$ rotated about x-axis
 - (d) Region between $y = \sqrt{6x}$ and y = 5x rotated about y-axis
- 35. A solid has circular cross-sections. The radius at height h is $r(h) = \sqrt{49 h^2}$ for $0 \le h \le 7$.
 - (a) Set up the integral for the volume
 - (b) Calculate the volume
 - (c) Identify the shape of the solid
 - (d) Find the surface area if this represents a hemisphere

Section H: Applications in Physics and Engineering

- 36. A particle moves with velocity $v(t) = 5t^2 12t + 7$ m/s.
 - (a) Find the displacement from t = 0 to t = 6
 - (b) Calculate the total distance traveled
 - (c) Find the position function if s(0) = 18
 - (d) Determine when the particle changes direction
 - (e) Calculate the average velocity over [0, 6]
- 37. The acceleration of an object is $a(t) = 12t 16 \text{ m/s}^2$.
 - (a) Find the velocity if v(0) = 7 m/s
 - (b) Find the position if s(0) = 5
 - (c) Calculate the displacement from t = 2 to t = 4
 - (d) Find when the object is at rest
 - (e) Determine the object's position at minimum velocity
- 38. Water flows into a tank at rate R(t) = 15 3t liters per minute.
 - (a) Find the total volume added in the first 4 minutes
 - (b) If the tank initially contains 40 liters, find V(t)
 - (c) Calculate the average flow rate over 4 minutes
 - (d) Find when the flow rate becomes zero
 - (e) Determine the maximum volume in the tank
- 39. The gravitational potential energy per unit mass is $\phi = -\frac{GM}{r}$ where G, M are constants.
 - (a) Find gravitational field $g = -\frac{d\phi}{dr}$
 - (b) Calculate work done moving mass m from r_1 to r_2
 - (c) Find escape velocity using energy conservation
 - (d) Compare with surface gravity acceleration
- 40. The voltage across an inductor is $v(t) = L\frac{di}{dt}$ where L is inductance.
 - (a) Find current i(t) given $v(t) = V_0 e^{-t/\tau}$ and i(0) = 0
 - (b) Calculate energy stored $E = \int_0^\infty i^2 R \, dt$ in resistor
 - (c) Find time constant τ in terms of L and R
 - (d) Determine when current reaches 63% of final value

Section I: Advanced Applications and Techniques

- 41. The center of mass of a thin rod from x = a to x = b with density $\rho(x)$ is: $\bar{x} = \frac{\int_a^b x \rho(x) dx}{\int_a^b \rho(x) dx}$
 - (a) Find the center of mass of a rod from x = 0 to x = 7 with density $\rho(x) = 6x + 5$
 - (b) Calculate the total mass of the rod
 - (c) Find the center of mass if density is $\rho(x) = e^{6x}$
 - (d) Compare with uniform density $\rho(x) = 6$
- 42. The moment of inertia about the x-axis is $I_x = \int y^2 dm$ where $dm = \rho dA$.

- (a) Find I_x for the region under $y = 6x^2$ from x = 0 to x = 1 with uniform density
- (b) Calculate the radius of gyration $r_g = \sqrt{\frac{I_x}{M}}$
- (c) Find the moment of inertia about the y-axis
- (d) Analyze the distribution of mass relative to axes
- 43. Arc length of a curve y = f(x) from x = a to x = b is: $L = \int_a^b \sqrt{1 + (f'(x))^2} dx$
 - (a) Find the arc length of $y = 6x^2$ from x = 0 to x = 1
 - (b) Calculate the arc length of $y = \ln(6x)$ from x = 1 to x = e
 - (c) Find the perimeter of one arch of $y = 5 \sin x$
 - (d) Derive the formula using vector calculus
- 44. Surface area of revolution about x-axis is: $S = 2\pi \int_a^b y \sqrt{1 + (y')^2} dx$
 - (a) Find the surface area when y = 6x from x = 0 to x = 4 is rotated
 - (b) Calculate surface area for $y = \sqrt{6x}$ from x = 0 to x = 6
 - (c) Find the surface area of a cone with base radius 6R and height 5h
 - (d) Use geometric formula to verify result
- 45. Economic applications of integration:
 - (a) If marginal cost is MC(x) = 7x + 13, find total cost function given fixed costs of £350
 - (b) Calculate consumer surplus if demand is $p = 60 6x^2$ and price is £24
 - (c) Find producer surplus for supply curve $p = 5x^2 + 7$ at equilibrium price £22
 - (d) Determine optimal taxation to maximize government revenue
- 46. Probability density functions satisfy $\int_{-\infty}^{\infty} f(x) dx = 1$.
 - (a) Find the constant h so that $f(x) = hx^7$ is a PDF on [0,1]
 - (b) Calculate $P(0.3 \le X \le 0.8)$ for this distribution
 - (c) Find the first and third quartiles
 - (d) Calculate the interquartile range
- 47. Design an integration problem modeling thermodynamics:
 - (a) Define a heat capacity function varying with temperature
 - (b) Set up integrals for enthalpy and entropy changes
 - (c) Calculate work done in thermodynamic processes
 - (d) Interpret results for engine efficiency
 - (e) Discuss applications in energy systems
- 48. Advanced computational integration:
 - (a) Use the trapezoidal rule with n = 14 to approximate $\int_0^4 e^{-x^2/2} dx$
 - (b) Apply Simpson's rule with n = 14 to the same integral
 - (c) Compare with normal distribution tables
 - (d) Analyze convergence properties of methods
 - (e) Research Monte Carlo integration techniques

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepupmaths.co.uk