A Level Statistics Practice Test 2: Advanced Topics

Instructions:

Answer all questions. Show your working clearly.
Calculators may be used unless stated otherwise.

Draw diagrams where appropriate to illustrate your solutions.

Time allowed: 3 hours

Section A: Fundamental Concepts [25 marks]

- 1. [12 marks] Define and explain fundamental concepts:
 - (a) Define confidence intervals and explain their interpretation.
 - (b) Explain what is meant by "confidence level" and "margin of error."
 - (c) State the relationship between confidence level and interval width.
 - (d) Define Type I and Type II errors in hypothesis testing.
 - (e) Distinguish between significance level and p-value.
 - (f) Explain how confidence intervals relate to hypothesis testing.
 - 2. [8 marks] Explain the importance of these concepts:
 - (a) Why are confidence intervals preferred over point estimates?
 - (b) Explain how Type I and Type II errors affect decision-making in practice.
 - (c) Describe the trade-off between Type I and Type II error rates.
 - (d) Explain the relationship between sample size and statistical power.
 - 3. [5 marks] Practical and theoretical context:
 - (a) Explain why we use sampling distributions in statistical inference.
 - (b) Describe the role of assumptions in statistical procedures.
 - (c) Explain how robust statistical methods handle assumption violations.

Section B: Confidence Intervals - Theory [30 marks]

- 4. [15 marks] State and explain confidence interval construction:
 - (a) Write the general formula for a confidence interval for a population mean.
 - (b) Explain the role of the critical value in interval construction.
 - (c) Describe when to use t-distribution versus normal distribution.
 - (d) State the assumptions required for confidence intervals for means.
 - (e) Explain how sample size affects interval width.
 - (f) Describe the relationship between confidence level and critical values.
 - 5. [15 marks] Properties and interpretation of confidence intervals:
 - (a) Explain the correct interpretation of a 95
 - (b) Describe common misinterpretations of confidence intervals.
 - (c) Explain what happens to interval width as confidence level increases.
 - (d) Describe the concept of coverage probability.
 - (e) Explain how to determine appropriate sample sizes for desired precision.
 - (f) Discuss the effect of population variability on interval width.
 - (g) Explain confidence intervals for proportions and their assumptions.
 - (h) Describe the Wilson score interval and when it should be used.
 - (i) Explain the concept of exact versus approximate confidence intervals.

Section C: Confidence Interval Applications [35 marks]

- 6. [18 marks] A random sample of 25 measurements has mean $\bar{x} = 12.4$ and standard deviation s = 3.2:
 - (a) Construct a 95
 - (b) Construct a 99
 - (c) Compare the widths of the two intervals and explain the difference.
 - (d) If the sample size were 100 instead of 25, calculate the 95
 - (e) Explain how quadrupling the sample size affects the interval width.
 - (f) Determine the sample size needed for a margin of error of 1.0 with 95
 - (g) If the population standard deviation were known to be = 3.0, recalculate the 95
 - (h) Explain when it's appropriate to assume the population standard deviation is known.
 - (i) Discuss the practical implications of the interval estimates.
 - 7. [17 marks] A survey of 400 voters finds that 216 support a particular candidate:
 - (a) Calculate the sample proportion \hat{p} .
 - (b) Construct a 95

- (c) Check whether the normal approximation conditions are satisfied.
- (d) Construct a 90
- (e) Calculate the margin of error for each confidence level.
- (f) Determine the sample size needed for a margin of error of 0.02 with 95
- (g) If the true population proportion were 0.50, what's the probability the sample proportion exceeds 0.55?
- (h) Explain how this relates to the confidence interval coverage.
- (i) Discuss the political implications of the interval estimate.

Section D: Hypothesis Testing - Theory [25 marks]

- 8. [12 marks] Explain hypothesis testing framework:
 - (a) Define null and alternative hypotheses with examples.
 - (b) Explain the logic of proof by contradiction in hypothesis testing.
 - (c) Define the p-value and explain its interpretation.
 - (d) Describe the relationship between p-values and significance levels.
 - (e) Explain why we "fail to reject" rather than "accept" the null hypothesis.
 - (f) Relate the burden of proof concept to statistical testing.
 - 9. [13 marks] Error types and statistical power:
 - (a) Define Type I error and explain its consequences.
 - (b) Define Type II error and explain its consequences.
 - (c) Define statistical power and explain its importance.
 - (d) Explain the relationship between , , and power.
 - (e) Describe factors that affect statistical power.
 - (f) Explain how to calculate required sample sizes for desired power.
 - (g) Describe the effect of effect size on power calculations.
 - (h) Explain the concept of practical versus statistical significance.
 - (i) Discuss the multiple testing problem and correction methods.

Section E: Hypothesis Testing Applications [30 marks]

- 10. [15 marks] A manufacturer claims the mean weight of cereal boxes is 500g. A sample of 36 boxes has mean 496.5g and standard deviation 8.2g:
 - (a) State appropriate null and alternative hypotheses.
 - (b) Check the assumptions for a one-sample t-test.
 - (c) Calculate the test statistic and degrees of freedom.

- (d) Find the p-value for a two-tailed test.
- (e) Make a decision using = 0.05 and state your conclusion.
- (f) Calculate the 95
- (g) If the true mean were 498g, calculate the probability of Type II error.
- (h) Calculate the power of the test to detect a mean of 498g.
- (i) Determine the sample size needed for 90
- 11. [15 marks] A new teaching method is tested. Before: mean = 72.3, n = 30, s = 8.5. After: mean = 76.8, n = 32, s = 9.2:
 - (a) State hypotheses for testing whether the new method improves scores.
 - (b) Check assumptions for a two-sample t-test.
 - (c) Calculate the pooled standard deviation assuming equal variances.
 - (d) Calculate the test statistic and degrees of freedom.
 - (e) Find the p-value and make a decision at = 0.01.
 - (f) Construct a 99
 - (g) Calculate the effect size (Cohen's d) and interpret its magnitude.
 - (h) If the true difference is 3 points, calculate the power of this test.
 - (i) Discuss the practical significance of the results.

Section F: Advanced Confidence Intervals [25 marks]

- 12. [12 marks] Non-standard confidence intervals:
 - (a) Explain confidence intervals for the variance of a normal population.
 - (b) Describe the chi-square distribution and its properties.
 - (c) Explain confidence intervals for the ratio of two variances.
 - (d) Describe bootstrap confidence intervals and their advantages.
 - (e) Explain non-parametric confidence intervals for medians.
 - (f) Discuss prediction intervals versus confidence intervals.
 - 13. [13 marks] A sample of 20 observations from a normal population has variance $s^2 = 15.6$:
 - (a) Construct a 95
 - (b) Construct a 95
 - (c) Explain why the interval for is not symmetric around s.
 - (d) If the sample size were 50, recalculate the confidence interval for ².
 - (e) Compare the interval widths and explain the effect of sample size.
 - (f) Test H: $^2 = 20$ versus H: $^2 20$ at = 0.05.
 - (g) Calculate the p-value for this test.
 - (h) Explain the relationship between the confidence interval and hypothesis test.
 - (i) Discuss applications where variance estimation is crucial.

Section G: Power Analysis and Sample Size [25 marks]

- 14. [12 marks] Power analysis concepts:
 - (a) Explain the four components of power analysis.
 - (b) Describe prospective versus retrospective power analysis.
 - (c) Explain the concept of minimum detectable difference.
 - (d) Discuss the ethics of underpowered studies.
 - (e) Explain interim analysis and stopping rules in clinical trials.
 - (f) Describe adaptive sample size designs.
- 15. [13 marks] A researcher wants to detect a difference of 5 units in mean response between two treatments, assuming = 12:
 - (a) Calculate the effect size for this study.
 - (b) Determine the sample size needed for 80
 - (c) Recalculate for 90
 - (d) Calculate the sample size needed if = 0.01 instead of 0.05.
 - (e) Explain how Type I error rate affects required sample sizes.
 - (f) If the true difference is actually 7 units, calculate the power with n = 30 per group.
 - (g) Create a power curve showing power versus effect size for n = 25 per group.
 - (h) Discuss the cost-benefit trade-offs in sample size determination.
 - (i) Explain how pilot studies inform power analysis.

Section H: Multiple Comparisons and ANOVA [20 marks]

- 16. [10 marks] Multiple comparison procedures:
 - (a) Explain why multiple testing increases Type I error rates.
 - (b) Describe the Bonferroni correction and its properties.
 - (c) Explain the False Discovery Rate and Benjamini-Hochberg procedure.
 - (d) Describe planned versus post-hoc comparisons.
 - (e) Explain the family-wise error rate concept.
- 17. [10 marks] An ANOVA study compares 4 treatment groups with the following results: F = 3.82, df = 3, df = 36:
 - (a) Calculate the p-value for the overall F-test.
 - (b) Make a decision at = 0.05 and state your conclusion.
 - (c) If we perform all pairwise comparisons (6 tests), what's the Bonferroni-corrected?
 - (d) Calculate the critical F-value for = 0.01.
 - (e) Explain what the significant F-test tells us about the treatment means.
 - (f) Describe appropriate follow-up analyses after a significant ANOVA.
 - (g) Calculate the minimum sample size per group for 80

Section I: Non-parametric Methods [20 marks]

- 18. [10 marks] Non-parametric testing concepts:
 - (a) Explain when non-parametric tests are preferred over parametric tests.
 - (b) Describe the advantages and disadvantages of non-parametric methods.
 - (c) Explain the concept of distribution-free tests.
 - (d) Describe rank-based test statistics and their properties.
 - (e) Explain the efficiency of non-parametric tests relative to parametric alternatives.
- 19. [10 marks] A Wilcoxon signed-rank test is performed on paired data with n = 15 pairs, yielding W = 89:
 - (a) State the null and alternative hypotheses for this test.
 - (b) Explain how the Wilcoxon test statistic is calculated.
 - (c) Determine the critical value for = 0.05 (two-tailed).
 - (d) Make a decision and state your conclusion.
 - (e) Calculate the normal approximation to the test statistic.
 - (f) Compare the exact and approximate p-values.
 - (g) Explain when the normal approximation is adequate for the Wilcoxon test.

Section J: Advanced Applications [25 marks]

- 20. [12 marks] Real-world statistical inference:
 - (a) Explain the role of statistical inference in clinical trials.
 - (b) Describe quality control applications of hypothesis testing.
 - (c) Explain how confidence intervals are used in engineering tolerances.
 - (d) Describe A/B testing in business analytics.
 - (e) Explain the statistical basis for opinion polling margins of error.
 - (f) Discuss the replication crisis and its implications for statistical practice.
- 21. [13 marks] A pharmaceutical company tests a new drug's effectiveness. In the treatment group (n = 120), 84 patients improved. In the control group (n = 110), 63 patients improved:
 - (a) Calculate the improvement rates for both groups.
 - (b) Construct 95
 - (c) Test whether the improvement rates differ significantly.
 - (d) Calculate the test statistic for comparing two proportions.
 - (e) Find the p-value and make a decision at = 0.05.
 - (f) Construct a 95
 - (g) Calculate the number needed to treat (NNT) and its confidence interval.

- (h) Discuss the clinical significance of the results.
- (i) Explain how regulatory agencies might interpret these findings.

Answer Space

Use this space for your working and answers.

Formulae and Key Concepts

Confidence Intervals:

Mean (known):
$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Mean (unknown): $\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$
Proportion: $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Hypothesis Testing:

One-sample t-test:
$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

Two-sample t-test: $t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$
Pooled SD: $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$

Power and Sample Size:

Effect size:
$$d = \frac{\mu_1 - \mu_0}{\sigma}$$

Power: $1 - \beta = P(\text{reject } H_0 | H_1 \text{ true})$
Sample size: $n = \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{(\mu_1 - \mu_0)^2}$

Chi-square Tests:

Variance:
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$
 with df = n-1
CI for ²: $\left[\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right]$

Two Proportions: Test statistic:
$$z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$
 Pooled proportion: $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$

Sample Size for Proportions:
$$n = \frac{z_{\alpha/2}^2 p(1-p)}{E^2} \text{ where E is margin of error}$$
 Conservative: use p = 0.5

Multiple Comparisons:

Bonferroni: $\alpha_{adj} = \frac{\alpha}{k}$ for k comparisons

Family-wise error rate: $\alpha_{FW} = 1 - (1 - \alpha)^k$

Non-parametric Tests:

Wilcoxon signed-rank: Sum of positive ranks Normal approximation: $z = \frac{W - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}}$

Effect Sizes:

Cohen's d: $d = \frac{\bar{x_1} - \bar{x_2}}{s_{pooled}}$ Small: d = 0.2, Medium: d = 0.5, Large: d = 0.8

Critical Values:

Standard normal: z. = 1.96, z. = 2.58Common t-values depend on df and level Chi-square values depend on df and level

END OF TEST

Total marks: 300

For more resources and practice materials, visit: stepupmaths.co.uk