A Level Pure Mathematics Practice Test 4: Exponentials and Logarithms

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 2 hours

Section A: Laws of Indices and Exponential Functions

1. Simplify these expressions using laws of indices:

(a)
$$6^3 \times 6^4 \times 6^{-5}$$

(b)
$$\frac{4^9 \times 4^{-3}}{4^5}$$

(c)
$$(7^3)^2 \times 7^{-4}$$

(d)
$$\frac{(6^3)^2 \times 6^{-4}}{6^3}$$

(e) $(5^2 \times 5^{-3})^3$

(e)
$$(5^2 \times 5^{-3})^3$$

(f)
$$\frac{8^{3x} \times 8^{x+1}}{8^{2x-3}}$$

2. Solve these exponential equations:

(a)
$$7^x = 343$$

(b)
$$6^{x-3} = 216$$

(c)
$$3^{2x+1} = 243$$

(d)
$$16^x = \frac{1}{2}$$

(e)
$$36^x = 6^{x+4}$$

(f)
$$9^{2x} = 27^{x-1}$$

3. Express in the form a^x where a is a rational number:

(a)
$$(\frac{1}{4})^x \times 16^x$$

(b)
$$\frac{64^x}{4^{3x}}$$

(c)
$$(27)^{\frac{x}{3}} \times (\frac{1}{3})^x$$

(d)
$$\frac{64^x \times 8^{-2x}}{512^{\frac{x}{3}}}$$

4. Sketch the graphs of these exponential functions, showing key features:

(a)
$$y = 6^x$$

(b)
$$y = (\frac{1}{6})^x$$

(c)
$$y = 3^x - 2$$

(d)
$$y = 4^{x+3}$$

- (e) $y = -4^x$
- (f) $y = 4^{-x}$
- 5. For the function $f(x) = 4e^x$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Describe the behavior as $x \to \infty$ and $x \to -\infty$
 - (d) Find f'(x) and comment on the gradient
 - (e) Sketch the graph, showing the tangent at (0,4)

Section B: Logarithmic Functions and Properties

- 6. Express these in logarithmic form:
 - (a) $7^2 = 49$
 - (b) $10^{-4} = 0.0001$
 - (c) $e^w = 3$
 - (d) $8^0 = 1$
 - (e) $9^{-1} = \frac{1}{9}$
 - (f) $d^u = t$
- 7. Express these in exponential form:
 - (a) $\log_7 343 = 3$
 - (b) $\log_{10} 0.0001 = -4$
 - (c) $\ln e^4 = 4$
 - (d) $\log_2 \frac{1}{32} = -5$
 - (e) $\log_d t = u$
 - (f) $\ln e^6 = 6$
- 8. Evaluate these logarithms without a calculator:
 - (a) $\log_7 49$
 - (b) $\log_6 216$
 - (c) $\log_{10} 1000000$
 - (d) $\log_5 \frac{1}{625}$
 - (e) $\log_{32} 8$
 - (f) $\log_{36} 6$
- 9. Use the laws of logarithms to simplify:
 - (a) $\log_d 6 + \log_d 8$
 - (b) $\log_d 42 \log_d 6$
 - (c) $6 \log_d 3$
 - (d) $\log_d a + 5 \log_d b \log_d c$
 - (e) $\frac{1}{5} \log_d 32 + \log_d 4$
 - (f) $\log_d(w^2 36) \log_d(w 6)$ where w > 6
- 10. Sketch the graphs of these logarithmic functions:

- (a) $y = \log_7 x$
- (b) $y = \ln x$
- (c) $y = \log_7 x 3$
- (d) $y = \log_7(x+3)$
- (e) $y = -\log_7 x$
- (f) $y = \log_7(-x)$ for x < 0

Section C: Solving Logarithmic Equations

- 11. Solve these logarithmic equations:
 - (a) $\log_7 x = 3$
 - (b) $\log_6(x-3) = 2$
 - (c) $\log_{10}(5x+1) = 2$
 - (d) ln(x+5) = 0
 - (e) $\log_2(x^2) = 6$
 - (f) $5\log_3 x = 10$
- 12. Solve these equations involving multiple logarithms:
 - (a) $\log_7 x + \log_7 6 = 2$
 - (b) $\log_d 18 \log_d 6 = \log_d x$
 - (c) $\log_3 x + \log_3(x 8) = 2$
 - (d) $\log_{10} x \log_{10} (x 6) = \log_{10} 5$
 - (e) $5\log_2 x = \log_2 8$
 - (f) $\log_5(x+4) + \log_5(x-4) = 2$
- 13. Solve these equations where the base is unknown:
 - (a) $\log_a 49 = 2$
 - (b) $\log_a \frac{1}{125} = -3$
 - (c) $\log_a 256 = \frac{8}{3}$
 - (d) $\log_a 729 = \frac{6}{2}$
- 14. Solve these quadratic logarithmic equations:
 - (a) $(\log_7 x)^2 = 9$
 - (b) $(\log_4 x)^2 6\log_4 x + 8 = 0$
 - (c) $\log^2 x 6 \log x + 8 = 0$ (base 10)
 - (d) $(\ln x)^2 8 \ln x + 15 = 0$
- 15. Use the change of base formula to evaluate:
 - (a) $\log_6 11$ in terms of natural logarithms
 - (b) $\log_8 24$ in terms of common logarithms
 - (c) $\log_5 18$ using ln
 - (d) Express $\log_r s \times \log_s t \times \log_t r$

Section D: Combined Exponential and Logarithmic Equations

- 16. Solve these mixed equations:
 - (a) $e^x = 11$
 - (b) $7^x = 35$
 - (c) $8 \times 3^x = 72$
 - (d) $4^{x+1} = 32$
 - (e) $e^{2x} 6e^x + 8 = 0$
 - (f) $7^{2x} 8 \times 7^x + 7 = 0$
- 17. Solve using substitution methods:
 - (a) $36^x 6^{x+3} 216 = 0$ (let $y = 6^x$)
 - (b) $32^x 7 \times 2^x + 2 = 0$ (let $u = 2^x$)
 - (c) $e^{2x} 9e^x + 20 = 0$ (let $t = e^x$)
 - (d) $\log^2 x 6\log x + 8 = 0$ (let $z = \log x$)
- 18. Find the exact solutions:
 - (a) $\ln x + \ln(x+5) = \ln 14$
 - (b) $\log_3 x + \log_2 7x = 3$
 - (c) $e^x + e^{-x} = 6$
 - (d) $5 \ln x = \ln(x + 20)$
- 19. Solve these equations involving both exponentials and logarithms:
 - (a) $x = \log_7(7^x + 6)$
 - (b) $e^{\ln x} = x + 7$
 - (c) $\ln(e^x 4) = 4$
 - (d) $\log_5(5^x + 20) = x + 2$
- 20. Find the values of x for which:
 - (a) $7^x > 2401$
 - (b) $\log_6 x < 2$
 - (c) $e^x \le 25$
 - (d) $\ln x \ge 3$
 - (e) $\log_7(x-4) > 2$
 - (f) $6^{x-1} < \frac{1}{36}$

Section E: Exponential Growth and Decay

- 21. A population grows according to $P = P_0 e^{kt}$ where $P_0 = 1600$ and k = 0.06 per year.
 - (a) Find the population after 4 years
 - (b) How long for the population to increase by 50%?
 - (c) What is the percentage growth rate per year?
 - (d) Find when the population reaches 5000
 - (e) Calculate the population after 18 years

- 22. A radioactive substance decays according to $A = A_0 e^{-\lambda t}$ where $\lambda = 0.0578$ per year.
 - (a) If initially there are 200g, find the amount after 8 years
 - (b) Calculate the half-life of the substance
 - (c) How long for 75% to decay?
 - (d) What percentage remains after 25 years?
 - (e) Find when only 25g remains
- 23. An investment grows at 9% compound interest per annum.
 - (a) Write the growth formula
 - (b) How long to increase by 150%?
 - (c) If £2500 is invested, find the value after 14 years
 - (d) How long for the investment to reach £12500?
 - (e) Compare with simple interest at 9% over $8~{\rm years}$
- 24. The temperature of a cooling object follows Newton's law: $T = T_{\text{room}} + (T_0 T_{\text{room}})e^{-kt}$
 - (a) If room temperature is 22°C, initial temperature is 92°C, and k = 0.08 per minute, find the temperature after 15 minutes
 - (b) How long for the object to cool to 45°C?
 - (c) Find the temperature after 50 minutes
 - (d) What happens as $t \to \infty$?
 - (e) If the object cools to 65° C after 8 minutes, find k
- 25. Carbon-14 dating uses the formula $A = A_0 e^{-0.000121t}$ where t is in years.
 - (a) Calculate the half-life of carbon-14
 - (b) If a sample has 40% of its original carbon-14, find its age
 - (c) How old is a sample with 5% remaining?
 - (d) What percentage remains after 25000 years?
 - (e) Find the age of a sample with ratio 0.55 of living organisms

Section F: Logarithmic Modeling and Applications

- 26. The Richter scale for earthquake magnitude is given by $M = \log_{10}(\frac{I}{I_0})$ where I is intensity.
 - (a) If one earthquake has magnitude 6.5 and another has magnitude 4.5, compare their intensities
 - (b) An earthquake has intensity 100000 times the reference level. Find its magnitude
 - (c) How much more intense is a magnitude 8.5 earthquake than magnitude 6.5?
 - (d) Find the magnitude of an earthquake with intensity $2 \times 10^7 I_0$
- 27. The pH scale is defined as $pH = -\log_{10}[H^+]$ where $[H^+]$ is hydrogen ion concentration.
 - (a) Find the pH when $[H^{+}] = 10^{-6} \text{ mol/L}$
 - (b) If pH = 2.5, find the hydrogen ion concentration
 - (c) Compare the acidity of solutions with pH 1 and pH 8
 - (d) Find the pH when $[H^{+}] = 6.3 \times 10^{-2} \text{ mol/L}$
 - (e) If the concentration is divided by 4, how does the pH change?

- 28. Sound intensity level in decibels is $L = 10 \log_{10}(\frac{I}{I_0})$ where $I_0 = 10^{-12}$ W/m².
 - (a) Find the decibel level when $I = 10^{-3} \text{ W/m}^2$
 - (b) A sound has level 95 dB. Find its intensity
 - (c) How much more intense is 110 dB than 70 dB?
 - (d) Find the intensity of a 35 dB sound
 - (e) If intensity increases by factor 2000, by how much do decibels increase?
- 29. The Michaelis-Menten equation in biochemistry is $v = \frac{V_{\text{max}}[S]}{K_m + |S|}$.
 - (a) Take logarithms to linearize when $[S] >> K_m$
 - (b) If $V_{\text{max}} = 150$, $K_m = 12$, find v when [S] = 24
 - (c) Plot $\log v$ against $\log[S]$ for large [S]
 - (d) Find [S] when $v = \frac{2V_{\text{max}}}{3}$
- 30. In information theory, entropy is $H = -\sum p_i \log_2 p_i$.
 - (a) For a fair 16-sided die, calculate the entropy
 - (b) For a biased coin with P(H) = 0.9, find the entropy
 - (c) Find the entropy of a fair 32-sided die
 - (d) What probability distribution maximizes entropy for 6 outcomes?

Section G: Advanced Functions and Transformations

- 31. Analyze the function $f(x) = \ln(x+5) 4$:
 - (a) State the domain and range
 - (b) Find the x and y intercepts
 - (c) Identify any asymptotes
 - (d) Find $f^{-1}(x)$
 - (e) Sketch both f(x) and $f^{-1}(x)$
- 32. For the function $g(x) = e^{5x-3} 6$:
 - (a) Describe the transformations from $y = e^x$
 - (b) State the domain and range
 - (c) Find the horizontal asymptote
 - (d) Solve g(x) = 0
 - (e) Find $g^{-1}(x)$
- 33. Consider $h(x) = \log_5(25 x^2)$:
 - (a) Find the domain of h(x)
 - (b) Determine the range
 - (c) Find the maximum value and where it occurs
 - (d) Solve h(x) = 1
 - (e) Sketch the graph of y = h(x)
- 34. The function $k(x) = re^{sx} + v$ passes through (0, 11), (1, 18), and has horizontal asymptote y = 5.
 - (a) Find the values of r, s, and v

- (b) Write the equation of k(x)
- (c) Find k(2)
- (d) Solve k(x) = 25
- (e) Find the domain and range of k(x)
- 35. Investigate the function $m(x) = x^3 \ln x$ for x > 0:
 - (a) Find m'(x) and m''(x)
 - (b) Locate any stationary points
 - (c) Determine the nature of stationary points
 - (d) Find the behavior as $x \to 0^+$ and $x \to \infty$
 - (e) Sketch the graph of y = m(x)

Section H: Systems and Complex Problems

36. Solve these simultaneous equations:

(a)
$$\begin{cases} y = 5^x \\ y = 10 - x \end{cases}$$

(b)
$$\begin{cases} \ln y = 5x \\ y = e^{x+4} \end{cases}$$

(c)
$$\begin{cases} \log_5 x + \log_5 y = 3 \\ x + y = 20 \end{cases}$$
(d)
$$\begin{cases} e^x + e^y = 12 \\ e^x - e^y = 8 \end{cases}$$

(d)
$$\begin{cases} e^x + e^y = 12 \\ e^x - e^y = 8 \end{cases}$$

37. Find where these curves intersect:

(a)
$$y = e^x$$
 and $y = \ln x$

(b)
$$y = 5^x \text{ and } y = x^5$$

(c)
$$y = \log x$$
 and $y = 5 - x$

(d)
$$y = e^{-x}$$
 and $y = x + 4$

38. Solve these differential equations:

(a)
$$\frac{dy}{dx} = ky$$
 where $y(0) = y_0$

(b)
$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$
 (logistic growth)

(c)
$$\frac{dT}{dt} = -k(T - T_{\text{env}})$$
 (Newton's cooling)

(d)
$$\frac{dN}{dt} = -\lambda N$$
 (radioactive decay)

- 39. A bacteria culture follows logistic growth: $P(t) = \frac{L}{1+ae^{-kt}}$
 - (a) If L = 2000, P(0) = 80, and P(1) = 160, find a and k
 - (b) Find the population after 8 days
 - (c) When does the population reach 1000?
 - (d) Find the maximum growth rate and when it occurs
 - (e) Compare with exponential growth $P = 80e^{rt}$
- 40. The Arrhenius equation in chemistry is $k = Ae^{-E_a/(RT)}$ where k is reaction rate.

- (a) Take natural logarithms to linearize the equation
- (b) If at temperature 310K, k = 0.012, and at 360K, k = 0.15, find E_a/R
- (c) Find the activation energy if $R = 8.314 \text{ J/(mol \cdot K)}$
- (d) Predict the rate constant at 400K
- (e) At what temperature does the rate increase 5-fold from 310K?

Section I: Advanced Applications and Modeling

- 41. A pharmacokinetic model describes drug concentration: $C(t) = \frac{D}{V}e^{-kt}$ where D is dose, V is volume of distribution, k is elimination rate.
 - (a) If D = 800 mg, V = 60 L, k = 0.15 h⁻¹, find the initial concentration
 - (b) Calculate the concentration after 6 hours
 - (c) Find the half-life of the drug
 - (d) When does concentration drop to 2.5 mg/L?
 - (e) Model repeated dosing every 4 hours
- 42. Economic growth follows $Y(t) = Y_0 e^{rt}$ where r is the growth rate.
 - (a) If GDP grows at 6% per year, how long to double?
 - (b) A country's GDP is £3 trillion and grows to £4.8 trillion in 6 years. Find the growth rate
 - (c) Compare linear growth $Y = Y_0(1 + rt)$ with exponential over 35 years
 - (d) Find when exponential growth overtakes linear with same initial rate
 - (e) Model with varying growth rate $r(t) = r_0 e^{-\delta t}$
- 43. The spread of an epidemic follows $I(t) = \frac{N}{1 + (N/I_0 1)e^{-rt}}$ (logistic model).
 - (a) If N = 20000, $I_0 = 25$, r = 0.12 per day, find infections after 16 days
 - (b) When do infections peak?
 - (c) Find the maximum rate of spread
 - (d) Compare with exponential model $I = I_0 e^{rt}$ for early stages
 - (e) Model intervention reducing r by 70% after day 22
- 44. Weber-Fechner law relates stimulus and perception: $P = k \log(S/S_0)$.
 - (a) If increasing stimulus 5-fold increases perception by 25 units, find k
 - (b) Find perception when stimulus increases 16-fold
 - (c) A sound's loudness follows $L=10\log_{10}(I/I_0)$. Compare two sounds differing by 35 dB
 - (d) Model brightness perception where threshold $S_0 = 0.12$ lux
 - (e) Explain why equal ratios produce equal differences in perception
- 45. Design an optimization problem involving exponentials:
 - (a) A company's profit is $P(t) = 2500e^{0.04t} 800t$ over t years
 - (b) Find when profit is maximized
 - (c) Calculate maximum profit
 - (d) Determine break-even points
 - (e) Model with discounting: present value = $\frac{P(t)}{e^{rt}}$
 - (f) Find optimal time to sell considering 8% discount rate

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$