A Level Statistics Practice Test 1: Data Collection

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Draw diagrams where appropriate to illustrate your solutions. Time allowed: 3 hours

Section A: Types of Data [25 marks]

- 1. [8 marks] Define and distinguish between different types of data:
 - (a) Define qualitative data and give three examples.
 - (b) Define quantitative data and give three examples.
 - (c) Explain the difference between discrete and continuous data.
 - (d) Give two examples each of discrete and continuous quantitative data.
 - 2. [10 marks] Classify the following variables and explain your reasoning:
 - (a) Height of students in a class
 - (b) Shoe sizes available in a shop
 - (c) Blood type (A, B, AB, O)
 - (d) Time taken to run 100 metres
 - (e) Number of goals scored in football matches
 - (f) Temperature measured to the nearest degree
 - (g) Car colors in a car park
 - (h) Annual income of employees
 - (i) Star ratings (1 to 5) for restaurants
 - (j) Weight of apples
- 3. [7 marks] A researcher is studying customer satisfaction at a restaurant. They collect the following data:
 - Customer age
 - Satisfaction rating (Poor, Fair, Good, Excellent)
 - Amount spent on meal

- Number of previous visits
- Preferred cuisine type
- (a) Classify each variable as qualitative or quantitative.
- (b) For quantitative variables, identify whether they are discrete or continuous.
- (c) Suggest appropriate methods for collecting each type of data.

Section B: Sampling Methods Fundamentals [30 marks]

- 4. [12 marks] Define and explain the four main sampling methods:
 - (a) Random sampling: Define and explain how to implement it.
 - (b) Systematic sampling: Describe the method and when it's appropriate.
 - (c) Stratified sampling: Explain the process and its advantages.
 - (d) Cluster sampling: Describe when and why this method is used.
- 5. [18 marks] A school has 1200 students: 400 in Year 12 (200 male, 200 female) and 800 in Year 13 (350 male, 450 female). A sample of 120 students is required for a survey.
 - (a) Describe how to select a simple random sample of 120 students.
 - (b) For systematic sampling, calculate the sampling interval and describe the selection process.
 - (c) Design a stratified sampling scheme using year group as the stratifying variable. Calculate the sample sizes for each stratum.
 - (d) Design a stratified sampling scheme using both year group and gender. Calculate all sample sizes.
 - (e) For cluster sampling, if classes are used as clusters with 30 students per class, how many clusters should be selected?
 - (f) Compare the advantages and disadvantages of each method for this scenario.

Section C: Bias in Sampling [35 marks]

- 6. [15 marks] Explain different types of bias and their effects on data quality:
 - (a) Define sampling bias and explain how it occurs.
 - (b) Describe selection bias and give an example.
 - (c) Explain response bias and suggest ways to minimize it.
 - (d) Define non-response bias and its potential impact on results.
 - (e) Describe convenience sampling bias and why it should be avoided.
 - 7. [20 marks] Analyze the following scenarios for potential bias:
- **Scenario 1:** A survey about internet usage is conducted by calling landline telephone numbers between 9 AM and 5 PM on weekdays.
- **Scenario 2:** A political opinion poll is conducted by standing outside a particular political party's headquarters.
 - Scenario 3: A health survey uses a mailed questionnaire with a return rate of 25%.

Scenario 4: A study of student study habits selects participants from the library during exam period.

Scenario 5: An online survey about technology use is shared only on social media platforms. For each scenario:

- (a) Identify the type(s) of bias present.
- (b) Explain how this bias might affect the results.
- (c) Suggest improvements to reduce bias.
- (d) Describe the likely direction of any bias in the results.

Section D: Frequency Tables and Data Organization [25 marks]

8. [12 marks] The following data shows the weights (in kg) of 40 adults:

- (a) Construct a frequency table using class intervals of width 5 kg, starting from 60 kg.
- (b) Calculate the relative frequency for each class.
- (c) Determine the modal class.
- (d) Calculate the percentage of adults weighing between 70 kg and 85 kg.
- (e) Construct a cumulative frequency table.
- 9. [13 marks] A survey of household incomes (in thousands of pounds) in a town gives the following frequency table:

Income (£'000)	Frequency	Cumulative Frequency
20-30	15	15
30-40	28	43
40-50	35	78
50-60	42	120
60-70	38	158
70-80	25	183
80-90	12	195
90-100	5	200

- (a) Calculate the relative frequency for each class.
- (b) Determine which income bracket contains the median.
- (c) Estimate the median income using interpolation.
- (d) Calculate the percentage of households earning less than £55,000.
- (e) Find the interquartile range by estimating Q1 and Q3.
- (f) Comment on the distribution of household incomes.

Section E: Bar Charts and Pie Charts [20 marks]

10. [10 marks] A survey of 240 students' favorite subjects gives the following results:

Subject	Number of Students
Mathematics	72
Science	54
English	48
History	36
Art	30

- (a) Construct a bar chart for this data.
- (b) Calculate the angles for a pie chart representation.
- (c) Draw a pie chart for this data.
- (d) Compare the effectiveness of bar charts versus pie charts for this data.
- (e) If the survey were extended to include 60 more students with the same proportions, calculate the new frequencies.
 - 11. [10 marks] A company's quarterly sales data (in millions) is:

	Q1	Q2	Q3	Q4
2022	15	18	22	25
2023	17	20	24	28

- (a) Create a comparative bar chart showing both years.
- (b) Calculate the percentage increase in sales from Q1 to Q4 in each year.
- (c) Determine which quarter showed the highest year-on-year growth.
- (d) Construct a pie chart for 2023 data showing the proportion of annual sales in each quarter.
- (e) Comment on the seasonal trends visible in the data.

Section F: Histograms [30 marks]

- 12. [15 marks] Explain the construction and interpretation of histograms:
 - (a) Define a histogram and explain how it differs from a bar chart.
 - (b) Explain why frequency density is used instead of frequency on the y-axis.
 - (c) Describe how to determine appropriate class intervals for a histogram.
 - (d) Explain how to interpret the shape of a histogram.
 - (e) Describe what equal and unequal class widths mean for histogram construction.
 - 13. [15 marks] The following data shows the time (in minutes) spent on homework by 80 students:

Time (minutes)	Frequency
0-20	8
20-30	12
30-40	18
40-60	25
60-80	12
80-120	5

- (a) Calculate the frequency density for each class interval.
- (b) Construct a histogram using these frequency densities.
- (c) Identify the modal class.
- (d) Estimate the mean time spent on homework.
- (e) Describe the shape of the distribution.
- (f) Estimate the median time using the histogram.
- (g) Calculate what percentage of students spent more than 50 minutes on homework.

Section G: Box Plots [25 marks]

- 14. [12 marks] Explain box plots and their components:
 - (a) Define the five-number summary used in box plots.
 - (b) Explain how to identify outliers using the $1.5 \times IQR$ rule.
 - (c) Describe what each part of a box plot represents.
 - (d) Explain how box plots are useful for comparing distributions.
 - (e) Describe the difference between box plots with and without outliers marked.
 - 15. [13 marks] The following data represents test scores for two classes: Class A: 45, 52, 58, 61, 65, 67, 69, 71, 73, 75, 77, 79, 82, 85, 88, 91, 94 Class B: 38, 41, 55, 59, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 83, 87, 95
 - (a) Calculate the five-number summary for each class.
 - (b) Construct box plots for both classes on the same scale.
 - (c) Identify any outliers in either dataset.
 - (d) Compare the central tendency of the two classes.
 - (e) Compare the spread of scores between the classes.
 - (f) Calculate the interquartile range for each class.
 - (g) Which class performed better overall? Justify your answer.

Section H: Choosing Appropriate Representations [15 marks]

- 16. [8 marks] For each scenario, choose the most appropriate data representation and justify your choice:
 - (a) Showing the market share of different smartphone brands.
 - (b) Displaying the distribution of heights in a population.
 - (c) Comparing exam scores between three different schools.
 - (d) Showing the relationship between temperature and ice cream sales over time.
 - (e) Displaying the number of cars sold each month by a dealership.
 - (f) Comparing the spread of house prices in different neighborhoods.

- (g) Showing the proportion of different blood types in a population.
- (h) Displaying the distribution of waiting times at a hospital.
- 17. [7 marks] A market research company needs to present data about consumer preferences to a client. They have collected both quantitative data (spending amounts, ages) and qualitative data (brand preferences, satisfaction levels).
 - (a) Suggest appropriate representations for the quantitative data.
 - (b) Recommend suitable charts for the qualitative data.
 - (c) Explain why different representations are needed for different types of data.
 - (d) Describe how to make the presentation accessible to non-technical stakeholders.

Section I: Data Collection Design [25 marks]

- 18. [15 marks] Design a data collection strategy for the following research question: "What factors influence students' choice of university?"
 - (a) Define the target population for this study.
 - (b) List the variables you would need to collect data on.
 - (c) Classify each variable as qualitative/quantitative and discrete/continuous where appropriate.
 - (d) Choose an appropriate sampling method and justify your choice.
 - (e) Design a sampling strategy including sample size considerations.
 - (f) Identify potential sources of bias and how to minimize them.
 - (g) Suggest appropriate data collection methods (surveys, interviews, etc.).
- 19. [10 marks] A local council wants to assess resident satisfaction with public services. They plan to survey 500 residents from a town of 50,000 people.
 - (a) Design a stratified sampling scheme using appropriate strata.
 - (b) Calculate sample sizes for each stratum.
 - (c) Identify potential challenges in data collection.
 - (d) Suggest methods to improve response rates.
 - (e) Describe how to ensure the sample is representative.
 - (f) Propose appropriate questions for measuring satisfaction.

Section J: Comprehensive Data Analysis [30 marks]

20. [20 marks] A fitness center collected data on 200 members' ages and weekly gym visits:

Age Group	Number of Members	Average Weekly Visits
18-25	45	4.2
26-35	68	3.8
36-45	52	3.1
46-55	25	2.6
56-65	10	2.1

- (a) Construct a frequency table showing the age distribution.
- (b) Create a histogram for the age distribution.
- (c) Calculate the mean age of gym members (use midpoint method).
- (d) Determine which age group has the median member.
- (e) Create a bar chart showing average weekly visits by age group.
- (f) Calculate the overall average weekly visits across all members.
- (g) Construct a pie chart showing the proportion of members in each age group.
- (h) Comment on the relationship between age and gym usage.
- 21. [10 marks] An online retailer wants to analyze customer data to improve their service. They have access to: Order values Customer locations Product categories purchased Customer age groups Delivery times Customer satisfaction ratings
 - (a) Classify each variable by type.
 - (b) Suggest appropriate sampling methods if they can't analyze all customers.
 - (c) Recommend suitable data representations for each variable.
 - (d) Identify potential sources of bias in their data.
 - (e) Propose ways to collect additional useful data.
 - (f) Design a dashboard layout to present key findings to management.

Answer Space

Use this space for your working and answers.

Formulae and Key Concepts

Frequency Density:

Frequency Density = $\frac{\text{Frequency}}{\text{Class Width}}$

Sampling:

 $\begin{array}{c} \text{Systematic sampling interval} = \frac{\text{Population size}}{\text{Sample size}} \\ \text{Stratified sample size for stratum} = \frac{\text{Stratum size}}{\text{Population size}} \times \text{Total sample size} \end{array}$

Box Plot (Five-number summary):

Minimum, Q1, Median, Q3, Maximum

$$IQR = Q3 - Q1$$
 Outliers: Values ; Q1 - 1.5 × IQR or ; Q3 + 1.5 × IQR

Pie Chart: Angle for category = $\frac{\text{Category frequency}}{\text{Total frequency}} \times 360$

Relative Frequency:

Relative Frequency = $\frac{\text{Frequency}}{\text{Total number of observations}}$

Interpolation for grouped data:

Estimated value = L + $\frac{(n \times p - CF)}{f} \times h$ where L = lower boundary, n = total frequency, p = proportion, CF = cumulative frequency before the class, f = class frequency, h = class width

END OF TEST

Total marks: 280

For more resources and practice materials, visit: stepupmaths.co.uk