GCSE Higher Mathematics Practice Test 5: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 7^3
 - (b) 3^{-4}
 - (c) 13^0
 - (d) $(-7)^2$
 - (e) $(-3)^5$
 - $(f) 9^{-2}$
- 2. Write these as single powers:
 - (a) $6^4 \times 6^9$
 - (b) $9^6 \div 9^2$
 - $(c) (4^6)^3$
 - (d) $8^{-3} \times 8^{11}$
 - (e) $\frac{11^8}{11^{-5}}$
 - $(f) (6^4)^{-3}$
- 3. Evaluate these fractional indices:
 - (a) $64^{\frac{1}{2}}$
 - (b) $216^{\frac{1}{3}}$
 - (c) $2401^{\frac{3}{4}}$
 - (d) $100000^{\frac{2}{5}}$
 - (e) $729^{\frac{2}{3}}$
 - (f) $243^{-\frac{3}{5}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{169}$
 - (b) $\sqrt[3]{512}$

- (c) $\sqrt[4]{1296}$
- (d) $\sqrt{0.81}$
- (e) $\sqrt[3]{-343}$
- (f) $\sqrt[5]{7776}$
- 5. Express in index form:
 - (a) $\sqrt{19}$
 - (b) $\sqrt[3]{13}$
 - (c) $\frac{1}{\sqrt{11}}$
 - (d) $\sqrt[4]{v^{11}}$
 - (e) $\frac{1}{\sqrt[3]{f^8}}$
 - (f) $\sqrt{v} \times \sqrt[3]{v}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $6^5 \times 6^{-8} \times 6^9$
 - (b) $\frac{8^{10} \times 8^{-6}}{8^{-5}}$
 - (c) $(7^3)^{-5} \times 7^{17}$
 - (d) $\frac{9^{-6} \times 9^{13}}{9^5}$
- 7. Evaluate these expressions:
 - (a) $729^{\frac{2}{3}}$
 - (b) $625^{-\frac{3}{4}}$
 - (c) $3125^{\frac{3}{5}}$
 - (d) $2401^{-\frac{3}{4}}$
 - (e) $1728^{\frac{1}{3}}$
 - (f) $16807^{-\frac{4}{5}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{7}{8}} \times x^{\frac{1}{4}}$
 - (b) $\frac{u^{\frac{9}{4}}}{u^{\frac{1}{3}}}$
 - (c) $(f^{\frac{1}{6}})^{12}$
 - (d) $\sqrt{v} \times v^{\frac{1}{7}}$
 - (e) $\frac{\sqrt[3]{m^8}}{\sqrt{m}}$
 - (f) $(s^{-\frac{1}{6}})^{-12}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{13} \times 13^6$
 - (b) $\frac{17^4}{\sqrt[3]{17}}$
 - (c) $\sqrt[4]{10^{11}} \times 10^{-\frac{3}{4}}$
 - (d) $\frac{\sqrt{19}}{\sqrt[3]{19^8}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{68}$
 - (b) $\sqrt{99}$
 - (c) $\sqrt{108}$
 - (d) $\sqrt{175}$
 - (e) $\sqrt{216}$
 - (f) $\sqrt{700}$
- 11. Simplify these expressions:
 - (a) $7\sqrt{13} + 11\sqrt{13}$
 - (b) $15\sqrt{6} 6\sqrt{6}$
 - (c) $\sqrt{44} + \sqrt{99}$
 - (d) $\sqrt{147} \sqrt{75}$
 - (e) $6\sqrt{20} + 8\sqrt{45}$
 - (f) $\sqrt{175} \sqrt{112} + \sqrt{28}$
- 12. Multiply and simplify:
 - (a) $\sqrt{9} \times \sqrt{36}$
 - (b) $\sqrt{21} \times \sqrt{84}$
 - (c) $7\sqrt{3} \times 5\sqrt{12}$
 - (d) $\sqrt{16} \times \sqrt{64}$
 - (e) $\sqrt{7} \times \sqrt{28} \times \sqrt{112}$
 - (f) $8\sqrt{6} \times 5\sqrt{24}$
- 13. Expand and simplify:
 - (a) $(6 + \sqrt{11})(3 \sqrt{11})$
 - (b) $(5 + \sqrt{17})(2 + 6\sqrt{17})$
 - (c) $(8 \sqrt{13})^2$
 - (d) $(\sqrt{19} + \sqrt{5})(\sqrt{19} \sqrt{5})$
 - (e) $(6\sqrt{11}+1)(6\sqrt{11}-1)$
 - (f) $(\sqrt{17}+6)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{17}}$
 - (b) $\frac{11}{\sqrt{19}}$
 - (c) $\frac{\sqrt{11}}{\sqrt{44}}$
 - (d) $\frac{12}{6\sqrt{3}}$
 - (e) $\frac{1}{5+\sqrt{11}}$
 - $(f) \ \frac{7}{1-\sqrt{17}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{9}{6+\sqrt{13}}$
 - (b) $\frac{13}{5-\sqrt{23}}$
 - $(c) \ \frac{\sqrt{11}}{1+\sqrt{11}}$
 - (d) $\frac{6\sqrt{17}}{5+\sqrt{17}}$
 - (e) $\frac{1}{\sqrt{18}-\sqrt{11}}$
 - (f) $\frac{\sqrt{17}+5}{\sqrt{17}-6}$
- 16. Simplify these expressions completely:
 - $(a) \ \frac{\sqrt{28} + \sqrt{63}}{\sqrt{7}}$
 - (b) $\frac{\sqrt{75} \sqrt{48}}{\sqrt{3}}$
 - (c) $\sqrt{(7+\sqrt{17})(7-\sqrt{17})}$
 - (d) $\sqrt{108} 6\sqrt{3} + \sqrt{75}$
 - (e) $(\sqrt{11} + \sqrt{44})^2$
 - (f) $\frac{\sqrt{99}}{\sqrt{11}} + \frac{\sqrt{77}}{\sqrt{11}}$
- 17. Prove that:
 - (a) $(\sqrt{i} + \sqrt{j})(\sqrt{i} \sqrt{j}) = i j$
 - (b) $\frac{1}{\sqrt{k}+\sqrt{l}} = \frac{\sqrt{k}-\sqrt{l}}{k-l}$
 - (c) $(k + l\sqrt{n})^2 = k^2 + 2kl\sqrt{n} + l^2n$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 789000
 - (b) 0.000106
 - (c) 5670000000
 - (d) 0.0000000398
 - (e) 1047.8
 - (f) 0.01058
- 19. Write these in ordinary form:
 - (a) 8.9×10^2
 - (b) 6.78×10^{-8}
 - (c) 9.214×10^{-11}
 - (d) 5.47×10^{14}
 - (e) 1.06×10^{-6}
 - (f) 7.89×10^9
- 20. Calculate, giving answers in standard form:

- (a) $(8 \times 10^8) \times (9 \times 10^{10})$
- (b) $(6 \times 10^{-6}) \times (11 \times 10^{11})$
- (c) $(18 \times 10^9) \div (6 \times 10^{-4})$
- (d) $(15 \times 10^{-8}) \div (9 \times 10^{-11})$
- (e) $(8 \times 10^7)^2$
- (f) $\sqrt{49 \times 10^{16}}$
- 21. Calculate these more complex expressions:
 - (a) $(6.4 \times 10^7) \times (2.25 \times 10^{-9})$
 - (b) $\frac{12.8 \times 10^{10}}{3.2 \times 10^{-7}}$
 - (c) $(7.2 \times 10^{-6}) + (8.9 \times 10^{-7})$
 - (d) $(9.5 \times 10^9) (6.3 \times 10^8)$
 - (e) $\frac{(6.3\times10^5)\times(5.4\times10^{-6})}{(6.3\times10^5)\times(5.4\times10^{-6})}$
 - (f) $(6.76 \times 10^{14})^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):
 - (a) $\frac{6}{11} + \frac{7}{22}$

 - (b) $\frac{13}{16} \frac{9}{24}$ (c) $\frac{14}{15} \times \frac{25}{21}$ (d) $\frac{12}{25} \div \frac{18}{35}$ (e) $\frac{9}{10} \frac{5}{12} + \frac{11}{60}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{6}$
 - (b) $0.\overline{72}$
 - (c) $0.5\overline{9}$
 - (d) $0.\overline{857142}$
 - (e) $4.1\overline{5}$
 - (f) $0.84\overline{7}$
- 24. Work out these percentage calculations:
 - (a) Increase 680 by 55%
 - (b) Decrease 840 by 28%
 - (c) Find 32.5% of 960
 - (d) What percentage is 126 out of 168?
 - (e) If 75% of a number is 195, find the number
 - (f) A price increases from £105 to £115.5. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 60% increase, a price is £256. Find the original price
 - (b) After a 55% decrease, a quantity is 108. Find the original quantity
 - (c) The value of a car decreases by 40% each year. If it's worth £10800 now, what was it worth 2 years ago?
 - (d) An investment grows by 7% per year. After 2 years it's worth £2287. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $6^{-2} + 9^0 10^{-1}$
 - (b) $\sqrt{64} \times 343^{\frac{1}{3}} 6^{-2}$
 - (c) $\frac{1024^{\frac{2}{3}}-2401^{\frac{3}{4}}}{64^{\frac{1}{2}}}$
 - (d) $36^{-\frac{1}{2}} + 81^{\frac{1}{2}} \times 5^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{9}{\sqrt{11}} + \frac{6}{\sqrt{44}}$
 - (b) $\sqrt{48} \times \sqrt{75} \sqrt{192}$
 - $(c) \ \frac{\sqrt{147} + \sqrt{108}}{\sqrt{3}}$
 - (d) $(6\sqrt{3}-5)^2$
- 28. Work with standard form in context:
 - (a) The mass of a carbon atom is 1.99×10^{-26} kg. Find the mass of 6.02×10^{23} carbon atoms
 - (b) Electromagnetic waves travel at 3×10^8 m/s. How far do they travel in one week (use 1 week = 6.048×10^5 seconds)?
 - (c) The diameter of a red blood cell is approximately 7.5×10^{-6} m. How many red blood cells would fit across a distance of 4.5 mm?
 - (d) A distributed computer system processes 9.6×10^{13} operations per second. How many operations in 20 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{11}$ is irrational. (Use proof by contradiction: assume $\sqrt{11} = \frac{m}{n}$ where m and n are integers with no common factors)
- 30. The number γ satisfies $\gamma^2 = 4\gamma 2$.
 - (a) Show that $\gamma = 2 + \sqrt{2}$
 - (b) Calculate γ to 4 decimal places
 - (c) Find $\frac{1}{\gamma}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{7}+\sqrt{11}+\sqrt{13}}$. (Hint: First rationalize using $(\sqrt{7}+\sqrt{11})-\sqrt{13}$)
- 32. A rectangle has sides of length $(6 + \sqrt{11})$ cm and $(6 \sqrt{11})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of microbes sextuples every 8 hours. If there are initially 7×10^2 microbes:
 - (a) How many microbes after 32 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 6×10^9 microbes?
- 34. Show that $\frac{1}{\sqrt{i}+\sqrt{j}} + \frac{1}{\sqrt{i}-\sqrt{j}} = \frac{2\sqrt{i}}{i-j}$

- 35. A cone has volume $V = \frac{1}{3}\pi r^2 h$. If the volume is $576\pi~{\rm cm}^3$ and $h = 18~{\rm cm}$:
 - (a) Find the radius in surd form
 - (b) Find the slant height (use $l^2 = r^2 + h^2$)
 - (c) Express both answers exactly
- 36. The equation $x^2 12x + 1 = 0$ has solutions $x = 6 \pm \sqrt{35}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{6+\sqrt{35}} + \frac{1}{6-\sqrt{35}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$