GCSE Higher Mathematics Practice Test 2: Algebra

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Linear and Simultaneous Equations

1. Solve these linear equations:

(a)
$$4(3x-2) = 2x + 14$$

(b)
$$\frac{x+5}{3} - \frac{x-1}{4} = 2$$

(b)
$$\frac{x+5}{3} - \frac{x-1}{4} = 2$$

(c) $\frac{3x-2}{4} = \frac{2x+1}{3} - 1$

(d)
$$0.4x + 0.8 = 0.3x - 0.5$$

2. Solve these simultaneous equations by elimination:

(a)
$$\begin{cases} 2x + 3y = 16\\ 3x - y = 5 \end{cases}$$

(b)
$$\begin{cases} 4x + 5y = 23 \\ 3x - 2y = 4 \end{cases}$$

(b)
$$\begin{cases} 4x + 5y = 23\\ 3x - 2y = 4 \end{cases}$$
(c)
$$\begin{cases} 3x + 4y = 17\\ 2x - 5y = 1 \end{cases}$$

(d)
$$\begin{cases} 5x + 2y = 24\\ 3x - 4y = 2 \end{cases}$$

3. Solve these simultaneous equations by substitution:

(a)
$$\begin{cases} y = 3x - 2 \\ 2x + 5y = 26 \end{cases}$$

(a)
$$\begin{cases} y = 3x - 2\\ 2x + 5y = 26 \end{cases}$$
(b)
$$\begin{cases} x = 4y + 1\\ 3x - y = 17 \end{cases}$$

(c)
$$\begin{cases} y = 7 - 3x \\ 2x + 4y = 18 \end{cases}$$

4. Find the graphical solution to these simultaneous equations by finding intersection points:

(a)
$$y = 3x - 1$$
 and $y = 7 - 2x$

(b)
$$y = x^2 - 3$$
 and $y = 3x + 1$

(c)
$$x^2 + y^2 = 16$$
 and $y = 2x - 1$

Section B: Quadratic Equations - Factoring

- 5. Factorize these quadratic expressions:
 - (a) $x^2 + 9x + 14$
 - (b) $x^2 7x 18$
 - (c) $x^2 11x + 28$
 - (d) $x^2 + 3x 18$
 - (e) $x^2 36$
 - (f) $x^2 12x + 36$
- 6. Solve these quadratic equations by factorizing:
 - (a) $x^2 + 9x + 20 = 0$
 - (b) $x^2 8x 9 = 0$
 - (c) $x^2 6x = 0$
 - (d) $x^2 49 = 0$
 - (e) $x^2 + 14x + 49 = 0$
 - (f) $3x^2 12x = 0$
- 7. Factorize these harder quadratics:
 - (a) $3x^2 + 8x + 4$
 - (b) $2x^2 9x + 7$
 - (c) $9x^2 16$
 - (d) $4x^2 + 13x 12$
 - (e) $16x^2 24x + 9$
 - (f) $6x^2 17x 3$
- 8. Solve by factorizing:
 - (a) $3x^2 + 7x 6 = 0$
 - (b) $2x^2 9x + 4 = 0$
 - (c) $9x^2 4 = 0$
 - (d) $4x^2 + 7x 2 = 0$

Section C: Completing the Square and Quadratic Formula

- 9. Complete the square for these expressions:
 - (a) $x^2 + 8x + 7$
 - (b) $x^2 6x + 2$
 - (c) $x^2 + 2x 5$
 - (d) $x^2 12x + 9$
 - (e) $3x^2 + 12x + 5$
 - (f) $2x^2 8x + 3$
- 10. Solve by completing the square:
 - (a) $x^2 + 8x + 5 = 0$
 - (b) $x^2 6x 2 = 0$

- (c) $x^2 + 4x + 1 = 0$
- (d) $3x^2 + 6x 2 = 0$
- 11. Use the quadratic formula to solve (leave in surd form where appropriate):
 - (a) $x^2 + 5x 2 = 0$
 - (b) $3x^2 7x + 2 = 0$
 - (c) $x^2 8x + 3 = 0$
 - (d) $2x^2 + 3x 4 = 0$
 - (e) $3x^2 + 8x + 2 = 0$
 - (f) $4x^2 5x 1 = 0$
- 12. Find the discriminant and state the nature of the roots:
 - (a) $x^2 + 7x + 10 = 0$
 - (b) $x^2 6x + 9 = 0$
 - (c) $x^2 + 3x + 7 = 0$
 - (d) $3x^2 5x + 2 = 0$

Section D: Quadratic Graphs and Applications

- 13. For the quadratic $y = x^2 6x + 8$:
 - (a) Find the y-intercept
 - (b) Find the x-intercepts by factorizing
 - (c) Complete the square to find the vertex
 - (d) Sketch the graph
 - (e) State the line of symmetry
- 14. For the quadratic $y = 3x^2 + 6x 2$:
 - (a) Complete the square
 - (b) Find the coordinates of the vertex
 - (c) Find the y-intercept
 - (d) State the line of symmetry
 - (e) Sketch the graph
- 15. A stone is thrown upward. Its height h (in meters) after t seconds is given by: $h = -4t^2 + 16t + 5$
 - (a) What is the initial height?
 - (b) At what times is the stone at ground level?
 - (c) What is the maximum height reached?
 - (d) At what time does it reach maximum height?
- 16. The revenue R (in thousands of pounds) from selling x thousand units is: $R = -3x^2 + 18x 15$
 - (a) How many units should be sold to maximize revenue?
 - (b) What is the maximum revenue?
 - (c) At what production levels is the revenue zero?

Section E: Linear Inequalities

- 17. Solve these linear inequalities:
 - (a) 4x + 7 > 23
 - (b) $3x 8 \le 13$
 - (c) 7 3x < 4
 - (d) $\frac{x+2}{3} \ge 4$
 - (e) 5 4x > 3x + 12
 - (f) $\frac{3x-2}{4} < \frac{x+5}{3}$
- 18. Show these inequalities on number lines:
 - (a) x > -3
 - (b) $x \le 5$
 - (c) $-2 < x \le 6$
 - (d) x < 2 or x > 7
- 19. Solve these compound inequalities:
 - (a) -4 < 3x + 2 < 8
 - (b) $5 \le 2x 3 \le 11$
 - (c) $-3 \le \frac{2x+1}{3} < 5$
- 20. Find the integer solutions to:
 - (a) 3x + 4 > 10 and x < 6
 - (b) $-2 \le x + 3 < 5$
 - (c) $x^2 < 25$

Section F: Quadratic Inequalities

- 21. Solve these quadratic inequalities:
 - (a) $x^2 7x + 10 > 0$
 - (b) $x^2 8x + 15 < 0$
 - (c) $x^2 9 < 0$
 - (d) $x^2 + 3x 10 \ge 0$
 - (e) $x^2 8x + 16 > 0$
 - (f) $3x^2 2x 1 < 0$
- 22. Solve and show on number lines:
 - (a) $x^2 16 \le 0$
 - (b) $x^2 + 2x 8 > 0$
 - (c) $2x^2 7x + 3 \ge 0$
- 23. Find the values of x for which:
 - (a) $x^2 < 4x + 5$
 - (b) $3x^2 + 2x \ge 1$
 - (c) $x^2 + 6x + 9 \le 0$

Section G: Algebraic Manipulation

- 24. Expand and simplify:
 - (a) (x+5)(3x-2)
 - (b) (2x-3)(x+6)
 - (c) $(3x+4)^2$
 - (d) $(4x-5)^2$
 - (e) (x+7)(x-7)
 - (f) (3x+4)(3x-4)
- 25. Expand these expressions:
 - (a) $(x+3)(x^2-2x+4)$
 - (b) $(3x-2)(x^2+x-2)$
 - (c) $(x+2)^3$
 - (d) $(3x-1)^3$
- 26. Factorize completely:
 - (a) $8x^2 + 12x$
 - (b) $9x^2 25$
 - (c) $x^3 4x$
 - (d) $3x^3 + 12x^2 + 12x$
 - (e) $x^3 64$
 - (f) $27x^3 + 8$
- 27. Simplify these algebraic fractions:
 - (a) $\frac{x^2-9}{x+3}$
 - (b) $\frac{x^2+7x+12}{x+4}$ (c) $\frac{3x^2-12}{x^2-4}$

 - (d) $\frac{x^3-27}{x^2-9}$

Section H: Algebraic Fractions and Advanced Topics

- 28. Add and subtract these algebraic fractions:
 - (a) $\frac{3}{x} + \frac{4}{x}$
 - (b) $\frac{7}{x} \frac{3}{x}$
 - (c) $\frac{2}{3x} + \frac{1}{6x}$
 - (d) $\frac{3}{x+2} + \frac{2}{x-3}$
 - (e) $\frac{x}{x+3} \frac{2}{x-2}$
 - (f) $\frac{3x}{x^2-4} + \frac{2}{x+2}$
- 29. Multiply and divide these algebraic fractions:

 - (a) $\frac{x}{4} \times \frac{8}{x^2}$ (b) $\frac{x+3}{5} \times \frac{10}{x+3}$
 - (c) $\frac{x^2-9}{x+2} \div \frac{x-3}{x+2}$

(d)
$$\frac{3x+9}{x^2-16} \times \frac{x-4}{6}$$

- 30. Solve these equations involving algebraic fractions:
 - (a) $\frac{x}{4} + \frac{x}{3} = 14$
 - (b) $\frac{3x+2}{5} = \frac{x-1}{2}$
 - (c) $\frac{4}{x} = \frac{3}{x-2}$
 - (d) $\frac{x+2}{x-3} = \frac{3x}{x+2}$
- 31. Make the subject of these formulae:
 - (a) $s = ut + \frac{1}{2}at^2$, make a the subject
 - (b) $V = \frac{4}{3}\pi r^3$, make r the subject
 - (c) $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$, make R_1 the subject
 - (d) $A = \frac{1}{2}(a+b)h$, make b the subject

Section I: Sequences

- 32. Find the nth term for these arithmetic sequences:
 - (a) 9, 14, 19, 24, ...
 - (b) 5, 11, 17, 23, ...
 - (c) 30, 26, 22, 18, ...
 - (d) $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \dots$
- 33. For these geometric sequences, find the nth term:
 - (a) $3, 9, 27, 81, \dots$
 - (b) 5, 20, 80, 320, ...
 - (c) 96, 48, 24, 12, ...
 - (d) $2, -6, 18, -54, \dots$
- 34. Find the sum of these series:
 - (a) First 25 terms of 7 + 11 + 15 + 19 + ...
 - (b) First 8 terms of 4 + 12 + 36 + 108 + ...
 - (c) 2+6+10+...+98 (arithmetic series)
 - (d) 5 + 10 + 20 + ... + 320 (geometric series)
- 35. These are quadratic sequences. Find the nth term:
 - (a) $3, 12, 27, 48, 75, \dots$
 - (b) $2, 9, 20, 35, 54, \dots$
 - (c) $1, 6, 15, 28, 45, \dots$
 - (d) $4, 13, 28, 49, 76, \dots$
- 36. A sequence is defined by $u_1 = 2$ and $u_{n+1} = 3u_n 1$.
 - (a) Find the first 5 terms
 - (b) Find a formula for u_n
 - (c) Calculate u_8

Section J: Problem Solving

- 37. The sum of two numbers is 18 and their product is 77. Find the two numbers.
- 38. A rectangular field has perimeter 56m. If the length is 8m more than the width, find the dimensions.
- 39. The difference between a positive number and its reciprocal is $\frac{8}{3}$. Find the number.
- 40. A rocket's height h (in meters) after t seconds is given by: $h = 80t 5t^2$
 - (a) When does it hit the ground?
 - (b) What is its maximum height?
 - (c) When is it 300m high?
- 41. Prove that the sum of the first n even numbers is n(n+1).
- 42. The quadratic $px^2 + qx + r = 0$ has roots α and β .
 - (a) Show that $\alpha + \beta = -\frac{q}{p}$
 - (b) Show that $\alpha\beta = \frac{r}{p}$
 - (c) If the roots are 4 and -1, find p, q, and r when p = 1
- 43. A function is defined as $g(x) = x^2 + mx + n$. If g(2) = 3 and g(4) = 15, find m and n.
- 44. The sum of the first n terms of a sequence is $S_n = 3n^2 + 2n$. Find the nth term of the sequence.

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$