A Level Pure Mathematics Practice Test 1: Vectors

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Vector Basics and Notation

1. Given vectors
$$\mathbf{a} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$, calculate:

- (a) $\mathbf{a} + \mathbf{b}$
- (b) $\mathbf{a} \mathbf{b}$
- (c) 2a + 3b
- (d) 3a 2b
- (e) $|\mathbf{a}|$ and $|\mathbf{b}|$
- (f) A unit vector in the direction of a
- 2. Express these vectors in component form:

(a)
$$\overrightarrow{AB}$$
 where $A(2,3,-1)$ and $B(5,1,4)$

(b)
$$\overrightarrow{PQ}$$
 where $P(-1,2,3)$ and $Q(4,-2,1)$

(c) The position vector of point
$$C$$
 if $\overrightarrow{OC} = 3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$

(d)
$$\overrightarrow{BA}$$
 where $A(1, -2, 3)$ and $B(4, 1, -2)$

3. Given
$$\mathbf{p} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$$
 and $\mathbf{q} = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k}$:

- (a) Find $|\mathbf{p}|$ and $|\mathbf{q}|$
- (b) Calculate $\mathbf{p}+\mathbf{q}$ and $\mathbf{p}-\mathbf{q}$

(c) Find scalars
$$\alpha$$
 and β such that $\alpha \mathbf{p} + \beta \mathbf{q} = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix}$

(d) Determine if ${\bf p}$ and ${\bf q}$ are parallel

4. Points
$$A$$
, B , and C have position vectors $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$, and $\mathbf{c} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$.

1

- (a) Find vectors \overrightarrow{AB} and \overrightarrow{AC}
- (b) Calculate the lengths |AB| and |AC|

- (c) Find the position vector of the midpoint of BC
- (d) Determine if triangle ABC is isosceles
- 5. Find the values of t for which these vectors are perpendicular:

(a)
$$\mathbf{u} = \begin{pmatrix} 2 \\ t \\ 1 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} t \\ 3 \\ -2 \end{pmatrix}$

(b)
$$\mathbf{p} = \begin{pmatrix} 1 \\ 2t \\ 3 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 4 \\ -1 \\ t \end{pmatrix}$

(c)
$$\mathbf{r} = t\mathbf{i} + 2\mathbf{j} - \mathbf{k} \text{ and } \mathbf{s} = 3\mathbf{i} + t\mathbf{j} + 4\mathbf{k}$$

Section B: Dot Product (Scalar Product)

6. Calculate the dot product of these vectors:

(a)
$$\mathbf{a} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$

(b)
$$\mathbf{p} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$
 and $\mathbf{q} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$

(c)
$$\mathbf{u} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$

(d)
$$\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} \text{ and } \mathbf{s} = 4\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$

7. Find the angle between these pairs of vectors:

(a)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

(b)
$$\mathbf{p} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

(c)
$$\mathbf{u} = 3\mathbf{i} + 4\mathbf{j}$$
 and $\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}$

(d)
$$\mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{s} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

8. Use the dot product to verify these properties:

- (a) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ (commutative)
- (b) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ (distributive)
- (c) $(k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b})$ for scalar k
- (d) $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$

9. Given vectors
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, and $\mathbf{c} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$:

- (a) Show that **a** and **b** are perpendicular
- (b) Find the component of **c** in the direction of **a**
- (c) Calculate $|\mathbf{a} + \mathbf{b} + \mathbf{c}|$

- (d) Find the angle between $\mathbf{a} + \mathbf{b}$ and \mathbf{c}
- 10. A triangle has vertices at A(1,2,3), B(4,1,2), and C(2,3,1).
 - (a) Find the vectors \overrightarrow{AB} and \overrightarrow{AC}
 - (b) Calculate the angle $\angle BAC$
 - (c) Find the area of triangle ABC
 - (d) Determine if the triangle is right-angled

Section C: Cross Product (Vector Product)

11. Calculate the cross product of these vectors:

(a)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$

(b)
$$\mathbf{p} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$$
 and $\mathbf{q} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$

(c)
$$\mathbf{u} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$

(d)
$$\mathbf{r} = \mathbf{i} + \mathbf{j}$$
 and $\mathbf{s} = \mathbf{j} + \mathbf{k}$

12. Verify these properties of the cross product:

(a)
$$\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$$
 (anti-commutative)

(b)
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$
 (distributive)

(c)
$$\mathbf{a} \times \mathbf{a} = \mathbf{0}$$

(d)
$$|\mathbf{a} \times \mathbf{b}|^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2$$

13. Find the area of the parallelogram spanned by:

(a)
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$

(b)
$$\mathbf{p} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k} \text{ and } \mathbf{q} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$$

- (c) Vectors from origin to points (2,1,3) and (1,4,2)
- (d) \overrightarrow{AB} and \overrightarrow{AC} where A(1,0,1), B(2,1,3), C(0,2,1)

14. Given
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$:

- (a) Calculate $\mathbf{a} \times \mathbf{b}$
- (b) Verify that $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}
- (c) Find a unit vector perpendicular to both **a** and **b**
- (d) Calculate the area of triangle with sides **a** and **b**
- 15. Use the scalar triple product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ to find:

(a) The volume of parallelepiped with edges
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

- (b) Whether points A(1,2,3), B(2,1,1), C(3,2,2), D(1,1,1) are coplanar
- (c) The volume of tetrahedron with vertices at (0,0,0), (1,2,1), (2,1,3), (1,1,2)

Section D: Equations of Lines

- 16. Find the vector equation of the line:
 - (a) Passing through A(2,1,3) in direction $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$
 - (b) Passing through points P(1,2,0) and Q(3,-1,4)
 - (c) Through origin parallel to vector $2\mathbf{i} 3\mathbf{j} + \mathbf{k}$
 - (d) Through (4, -1, 2) parallel to the line $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$
- 17. Convert these to parametric form:

(a)
$$\mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

(b)
$$\mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$

- (c) Line through (1, 2, 3) and (4, 0, -1)
- (d) $\mathbf{r} = (3+2t)\mathbf{i} + (1-t)\mathbf{j} + (2+3t)\mathbf{k}$
- 18. Find where these lines intersect the coordinate planes:

(a)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 and the *xy*-plane

(b)
$$\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$
 and the xz -plane

- (c) Line through (2,1,4) and (0,3,1) with the yz-plane
- 19. Determine if these pairs of lines intersect, are parallel, or are skew:

(a)
$$L_1: \mathbf{r} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} + t \begin{pmatrix} 2\\1\\3 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 3\\1\\4 \end{pmatrix} + s \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$

(b)
$$L_1: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$

- (c) Lines through (1,2,3) to (2,4,5) and (0,1,1) to (3,2,4)
- 20. Find the shortest distance between:

(a) Point
$$(2,1,3)$$
 and line $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$

(b) Parallel lines
$$L_1 : \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 and $L_2 : \mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

(c) Skew lines
$$L_1 : \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 and $L_2 : \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Section E: Equations of Planes

- 21. Find the equation of the plane:
 - (a) With normal vector $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ passing through (1,2,-1)
 - (b) Passing through points (1,0,0), (0,1,0), and (0,0,1)
 - (c) Containing the lines $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$
 - (d) Parallel to vectors $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$ through (1,1,1)
- 22. Convert between vector and Cartesian forms:

(a)
$$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$
 to Cartesian form

- (b) 2x y + 3z = 6 to vector form
- (c) x + 2y z = 4 to parametric form
- (d) $\mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = 5 \text{ to Cartesian form}$
- 23. Find where these planes intersect coordinate axes:
 - (a) 3x + 2y z = 6
 - (b) x 2y + 4z = 8
 - (c) 2x + y + 3z = 12
 - (d) x + y + z = 3
- 24. Determine the relationship between these planes:
 - (a) $\Pi_1: x + 2y z = 3$ and $\Pi_2: 2x + 4y 2z = 6$
 - (b) $\Pi_1: 2x y + 3z = 4$ and $\Pi_2: x + y z = 2$
 - (c) $\Pi_1: x + y + z = 1$ and $\Pi_2: 2x + 2y + 2z = 3$
 - (d) $\Pi_1: x-y+2z=5$ and $\Pi_2: 2x+y-z=1$
- 25. Find the line of intersection of these planes:
 - (a) x + y + z = 3 and 2x y + z = 1
 - (b) 2x + y 3z = 4 and x 2y + z = 1
 - (c) 3x y + 2z = 6 and x + 2y z = 3
 - (d) x + 2y + 3z = 6 and 2x y + z = 4

Section F: Angles and Distances

- 26. Find the angle between these planes:
 - (a) x + 2y z = 3 and 2x y + 2z = 5
 - (b) 3x + y 2z = 6 and x 3y + z = 4

(c)
$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 3$$

(d)
$$2x + 3y + z = 7$$
 and $x - y + 4z = 2$

- 27. Calculate the distance from point to plane:
 - (a) Point (2,1,3) to plane x + 2y 2z = 4
 - (b) Point (1, -1, 2) to plane 3x y + 2z = 6
 - (c) Point (0,0,0) to plane 2x + 3y z = 12
 - (d) Point (4, 1, -2) to plane x 3y + 2z = 5
- 28. Find the angle between line and plane:

(a) Line
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
 and plane $x+y+z=6$

- (b) Line through (1,0,2) and (3,2,1) with plane 2x y + 3z = 4
- (c) Line $\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ and plane 3x + y z = 2
- 29. Determine where these lines intersect planes:

(a)
$$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $x + y + 2z = 8$

(b) Line through (1,2,3) and (4,0,1) with plane 2x - y + z = 7

(c)
$$\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
 and $x - 2y + 3z = 10$

- 30. Find the reflection of point in plane:
 - (a) Point (2, 1, 3) in plane x + y z = 1
 - (b) Point (1, -1, 2) in plane 2x y + 2z = 6
 - (c) Point (0,3,1) in plane x + 2y + z = 4

Section G: Advanced Vector Geometry

- 31. A tetrahedron has vertices at A(1,0,0), B(0,2,0), C(0,0,3), and D(1,1,1).
 - (a) Find the volume of the tetrahedron
 - (b) Calculate the area of face ABC
 - (c) Find the equation of the plane containing face ABC
 - (d) Determine the perpendicular distance from D to plane ABC
 - (e) Verify the volume using the distance formula
- 32. Three forces $\mathbf{F_1} = 3\mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{F_2} = \mathbf{i} 4\mathbf{j} + 3\mathbf{k}$, and $\mathbf{F_3} = -2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ act on a particle.
 - (a) Find the resultant force
 - (b) Calculate the magnitude of the resultant
 - (c) Find a fourth force needed for equilibrium

- (d) If the forces act at point (1, 2, 1), find the moment about the origin
- 33. A regular tetrahedron has vertices at (1,1,1), (1,-1,-1), (-1,1,-1), and (-1,-1,1).
 - (a) Verify that all edges have equal length
 - (b) Find the center of the tetrahedron
 - (c) Calculate the angle between any two faces
 - (d) Find the equation of the sphere circumscribing the tetrahedron
- 34. The position vectors of points P, Q, and R are \mathbf{p} , \mathbf{q} , and \mathbf{r} respectively.
 - (a) Express the centroid G in terms of \mathbf{p} , \mathbf{q} , and \mathbf{r}
 - (b) Show that $\overrightarrow{PG} + \overrightarrow{QG} + \overrightarrow{RG} = \mathbf{0}$
 - (c) If S is the midpoint of QR, express \overrightarrow{PS} in terms of position vectors
 - (d) Prove that the medians of triangle PQR meet at the centroid
- 35. A line passes through point A(2,1,3) and is perpendicular to the plane 2x y + 3z = 6.
 - (a) Find the vector equation of the line
 - (b) Calculate where the line intersects the plane
 - (c) Find the foot of perpendicular from A to the plane
 - (d) Calculate the distance from A to the plane

Section H: Applications and Problem Solving

- 36. A parallelogram ABCD has vertices A(1,2,1), B(3,1,4), and C(5,4,2).
 - (a) Find the coordinates of vertex D
 - (b) Calculate the area of the parallelogram
 - (c) Find the lengths of the diagonals
 - (d) Determine if the parallelogram is a rhombus
 - (e) Calculate the angle between the diagonals
- 37. An aircraft flies from airport A(100, 200, 5) to airport B(400, 150, 8) (coordinates in km).
 - (a) Find the displacement vector \overrightarrow{AB}
 - (b) Calculate the distance traveled
 - (c) If the flight takes 2 hours, find the average velocity vector
 - (d) Find the bearing of B from A (projected onto horizontal plane)
 - (e) Calculate the angle of climb
- 38. A pyramid has square base with vertices at (2,2,0), (-2,2,0), (-2,-2,0), (2,-2,0) and apex at (0,0,4).
 - (a) Find the volume of the pyramid
 - (b) Calculate the area of each triangular face
 - (c) Find the total surface area
 - (d) Determine the angle between a triangular face and the base
 - (e) Find the equation of the plane containing one triangular face

39. Two particles move along lines
$$L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$.

- (a) Show that the lines are skew
- (b) Find the shortest distance between the lines
- (c) If the particles start at t = s = 0 and move with constant speeds, when are they closest?
- (d) Calculate their closest approach distance
- (e) Find the common perpendicular to both lines
- 40. A sphere has center C(2, -1, 3) and radius 5.
 - (a) Write the equation of the sphere
 - (b) Find where the sphere intersects the plane x + y + z = 4
 - (c) Determine if the line $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ intersects the sphere
 - (d) Find the equation of the tangent plane at point (7, -1, 3)
 - (e) Calculate the volume and surface area of the sphere

Section I: Advanced Topics and Modeling

- 41. Prove these vector identities:
 - (a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$ (vector triple product)
 - (b) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$
 - (c) $|\mathbf{a} \times \mathbf{b}|^2 + |\mathbf{a} \cdot \mathbf{b}|^2 = |\mathbf{a}|^2 |\mathbf{b}|^2$ (Lagrange identity)
 - (d) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$
- 42. Three planes $\Pi_1: x + 2y z = 3$, $\Pi_2: 2x y + 3z = 5$, and $\Pi_3: 3x + y + 2z = 8$ intersect.
 - (a) Find their common point of intersection
 - (b) Calculate the angles between each pair of planes
 - (c) Find the line of intersection of Π_1 and Π_2
 - (d) Determine the volume of the tetrahedron formed by the three planes and the origin
 - (e) Verify the intersection point lies on all three planes
- 43. A coordinate system undergoes rotation. The new basis vectors are: $\mathbf{e_1'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{e_2'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \mathbf{e_3'} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

- (a) Verify these form an orthonormal basis
- (b) Express vector $\begin{pmatrix} 3\\1\\2 \end{pmatrix}$ in the new coordinate system
- (c) Find the rotation matrix for this transformation
- (d) Calculate the angle of rotation about the z-axis

44. A crystal has lattice vectors $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ \sqrt{3} \\ 0 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$.

- (a) Calculate the volume of the unit cell
- (b) Find the angles between the lattice vectors
- (c) Determine the reciprocal lattice vectors
- (d) Calculate the density if each unit cell contains 4 atoms of mass 10^{-23} g
- (e) Find the distance between parallel planes with Miller indices (1, 1, 0)
- 45. Design a vector-based model for a real-world application:
 - (a) Choose a scenario involving 3D geometry (robotics, computer graphics, engineering)
 - (b) Define your coordinate system and relevant vectors clearly
 - (c) Set up vector equations describing the system
 - (d) Solve a specific problem using vector methods
 - (e) Discuss advantages of vector methods for your application
 - (f) Consider limitations and potential extensions of your model
- 46. A satellite orbits Earth in an elliptical path. At time t, its position vector is: $\mathbf{r}(t) = a\cos(\omega t)\mathbf{i} + b\sin(\omega t)\mathbf{j} + c\mathbf{k}$
 - (a) Find the velocity vector $\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}$
 - (b) Calculate the acceleration vector $\mathbf{a}(t) = \frac{d\mathbf{v}}{dt}$
 - (c) Show that acceleration is always directed toward the origin
 - (d) Find the speed as a function of time
 - (e) Determine when the satellite is closest to Earth
 - (f) Calculate the angular momentum $\mathbf{L} = \mathbf{r} \times m\mathbf{v}$
- 47. Vector calculus in 3D space involves del operator $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$.
 - (a) For scalar field $\phi(x, y, z) = x^2 + y^2 + z^2$, find $\nabla \phi$
 - (b) For vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, calculate $\nabla \cdot \mathbf{F}$ (divergence)
 - (c) Find $\nabla \times \mathbf{F}$ (curl) for the same vector field
 - (d) Verify that $\nabla \times (\nabla \phi) = \mathbf{0}$ for any scalar field ϕ
 - (e) Show that $\nabla \cdot (\nabla \times \mathbf{F}) = 0$ for any vector field \mathbf{F}
- 48. Integration and applications:
 - (a) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = y\mathbf{i} + x\mathbf{j}$ and C is the curve from (0,0) to (1,1) along $y = x^2$
 - (b) Calculate the work done by force $\mathbf{F} = (x+y)\mathbf{i} + (x-y)\mathbf{j} + z\mathbf{k}$ moving a particle from (0,0,0) to (1,1,1)
 - (c) Find the flux of $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ through the surface of unit cube
 - (d) Apply Green's theorem to evaluate $\oint_C (x^2 + y^2) dx + 2xy dy$ around unit circle

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$