GCSE Foundation Mathematics Practice Test 1: Probability

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Basic Probability Concepts

(f) The sun rising tomorrow

(a) P(certain) = 1
 (b) P(impossible) = 0
 (c) P(even chance) = 0.5
 (d) P(very likely) = 0.8

(e) $P(\text{unlikely}) = \frac{1}{5}$

			, , ,	,	0 /	•	
(a) Getting heads wh	en flipping a fai	ir coin				
(b) Rolling a 7 on a s	tandard six-side	ed die				
(c) It will rain someti	me next year					
(d) Getting a number	less than 10 w	hen rolling a stand	dard die			
(e) Choosing a red ca	rd from a stand	dard pack of cards				

1. State whether these events are certain, likely, even chance, unlikely, or impossible:

2. Express these probabilities as fractions, decimals, and percentages:

3.	Complete these probability statements:
	(a) All probabilities are between and
	(b) If $P(A) = 0.3$, then $P(\text{not } A) =$
	(c) If $P(B) = \frac{2}{7}$, then $P(\text{not } B) =$
	(d) The sum of all probabilities in a sample space equals

4. A spinner has 5 equal sections numbered 1, 2, 3, 4, 5. Write down:

(a) The sample space
(b) $P(\text{spinning a 3})$
(c) P(spinning an even number)
(d) P(spinning a number greater than 3)
(e) $P(\text{spinning a number less than 6})$

Section B: Single Event Probability

- 5. A fair six-sided die is rolled. Find the probability of rolling:
 - (a) A 4
 - (b) An odd number
 - (c) A number greater than 4
 - (d) A number less than or equal to 2
 - (e) A multiple of 3
 - (f) A number between 2 and 5 (inclusive)
- 6. A bag contains 8 red balls, 5 blue balls, and 3 green balls. A ball is drawn at random. Find the probability of drawing:
 - (a) A red ball
 - (b) A blue ball
 - (c) A green ball
 - (d) A red or blue ball
 - (e) Not a green ball
 - (f) Not a red ball
- 7. A standard pack of 52 playing cards is shuffled. Find the probability of drawing:
 - (a) An ace
 - (b) A heart
 - (c) A red card
 - (d) The king of spades
 - (e) A picture card (Jack, Queen, King)
 - (f) A black ace
- 8. The probability that Sarah passes her driving test is $\frac{3}{4}$. What is the probability that she fails?
- 9. In a class of 24 students, 15 are right-handed. If a student is chosen at random, find the probability they are:
 - (a) Right-handed
 - (b) Left-handed

Section C: Sample Spaces and Outcomes

- 10. A coin is flipped twice.
 - (a) List all possible outcomes
 - (b) How many outcomes are in the sample space?
 - (c) Find P(two heads)
 - (d) Find P(at least one tail)
 - (e) Find P(exactly one head)
- 11. Two fair dice are rolled and their scores are added.
 - (a) Complete the sample space table showing all possible totals:

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3					
3	4					
4	5					
5	6					
6	7					

- (b) Find P(total = 7)
- (c) Find P(total = 12)
- (d) Find P(total > 10)
- (e) Find P(total is even)
- 12. A spinner has 4 equal sections: Red (R), Blue (B), Green (G), Yellow (Y). The spinner is spun twice.
 - (a) List all possible outcomes
 - (b) Find P(both colours the same)
 - (c) Find P(at least one red)
 - (d) Find P(no blue)
- 13. A bag contains counters numbered 1, 2, 3, 4. Two counters are drawn without replacement.
 - (a) List all possible pairs
 - (b) Find P(both numbers even)
 - (c) Find P(sum of numbers = 5)
 - (d) Find P(first number > second number)

Section D: Probability Rules

- 14. For mutually exclusive events A and B, where P(A) = 0.3 and P(B) = 0.5:
 - (a) Find P(A or B)
 - (b) Find P(neither A nor B)
 - (c) What is P(A and B)? Explain your answer.
- 15. A card is drawn from a standard pack. Let A = "drawing a heart" and B = "drawing a king".
 - (a) Find P(A)
 - (b) Find P(B)
 - (c) Find P(A and B)
 - (d) Find P(A or B)
 - (e) Are events A and B mutually exclusive? Explain.
- 16. The probability of rain on Monday is 0.4. The probability of rain on Tuesday is 0.6. Assuming the events are independent:
 - (a) Find the probability of rain on both days
 - (b) Find the probability of no rain on either day
 - (c) Find the probability of rain on at least one day
 - (d) Find the probability of rain on exactly one day

- 17. A biased coin has P(heads) = 0.6. The coin is flipped three times.
 - (a) Find P(three heads)
 - (b) Find P(three tails)
 - (c) Find P(at least one head)
 - (d) Find P(exactly two heads)

Section E: Tree Diagrams

- 18. A bag contains 3 red balls and 2 blue balls. Two balls are drawn without replacement.
 - (a) Draw a tree diagram showing all possibilities
 - (b) Find P(two red balls)
 - (c) Find P(two blue balls)
 - (d) Find P(one red and one blue)
 - (e) Find P(at least one red ball)
- 19. The probability that a student passes Math is 0.8 and passes English is 0.7. Assume the subjects are independent.
 - (a) Draw a tree diagram
 - (b) Find the probability of passing both subjects
 - (c) Find the probability of failing both subjects
 - (d) Find the probability of passing exactly one subject
 - (e) Find the probability of passing at least one subject
- 20. A factory has two machines. Machine A works 90% of the time, Machine B works 85% of the time.
 - (a) Draw a tree diagram
 - (b) Find the probability both machines work
 - (c) Find the probability exactly one machine works
 - (d) Find the probability at least one machine works
 - (e) Find the probability neither machine works
- 21. Box 1 contains 4 red and 6 white balls. Box 2 contains 7 red and 3 white balls. A box is chosen at random, then a ball is drawn from that box.
 - (a) Draw a tree diagram
 - (b) Find the probability of drawing a red ball
 - (c) Find the probability of drawing a white ball
 - (d) If a red ball is drawn, what is the probability it came from Box 1?

Section F: Conditional Probability

22. The two-way table shows information about students and their pets:

	Has pet	No pet	Total
Boys	15	25	40
Girls	20	20	40
Total	35	45	80

A student is chosen at random. Find:

- (a) P(has pet)
- (b) P(boy)
- (c) P(has pet and is a boy)
- (d) P(has pet -boy)
- (e) P(boy has pet)
- 23. In a survey of 100 people about tea and coffee preferences:
 - 60 people like tea
 - 45 people like coffee
 - 25 people like both tea and coffee

Find the probability that a randomly chosen person:

- (a) Likes tea or coffee
- (b) Likes neither tea nor coffee
- (c) Likes coffee given they like tea
- (d) Likes only tea
- (e) Likes only coffee
- 24. A bag contains red and blue marbles. $P(\text{red}) = \frac{2}{5}$. Two marbles are drawn without replacement. If there are 15 marbles in total:
 - (a) How many red marbles are there?
 - (b) How many blue marbles are there?
 - (c) Find P(second marble is red first marble is red)
 - (d) Find P(second marble is red first marble is blue)

Section G: Experimental vs Theoretical Probability

25. A biased die is rolled 200 times with these results:

Number	1	2	3	4	5	6
Frequency	25	30	35	40	45	25

- (a) Calculate the experimental probability for each number
- (b) Which number is most likely to appear?
- (c) Compare with theoretical probabilities for a fair die
- (d) If the die is rolled 500 times, estimate how many 5s you would expect
- 26. A spinner is tested and gives these results: Red: 45 times, Blue: 35 times, Green: 20 times
 - (a) How many times was the spinner used?
 - (b) Calculate the experimental probability of each colour
 - (c) If the spinner has equal sections, how many sections should there be?
 - (d) Estimate how many times blue would appear in 400 spins
- 27. A coin is flipped 50 times and lands heads 32 times.
 - (a) What is the experimental probability of heads?
 - (b) What is the experimental probability of tails?
 - (c) Is this coin likely to be fair? Explain your reasoning.
 - (d) If the coin is flipped 200 more times, estimate how many heads you would expect

Section H: Problem Solving

- 28. In a lottery, the probability of winning the jackpot is $\frac{1}{14000000}$.
 - (a) Express this as a decimal (to 3 significant figures)
 - (b) What is the probability of not winning?
 - (c) If 7 million people play, estimate how many will win
 - (d) Is it sensible to expect to win? Explain.
- 29. A medical test is 95% accurate. This means:
 - If someone has the disease, there's a 95% chance the test is positive
 - If someone doesn't have the disease, there's a 95% chance the test is negative

In a population where 2\% of people have the disease:

- (a) Out of 1000 people, how many actually have the disease?
- (b) How many of those with the disease will test positive?
- (c) How many without the disease will test negative?
- (d) How many false positives will there be?
- 30. Three friends each roll a fair die. What is the probability that:
 - (a) All three get the same number?
 - (b) All three get different numbers?
 - (c) At least two get the same number?
 - (d) The total of all three dice is 18?
- 31. A password consists of 2 letters followed by 3 digits. Letters and digits can be repeated.
 - (a) How many different passwords are possible?
 - (b) What is the probability of guessing the correct password in one attempt?
 - (c) If only capital letters are used and the first digit cannot be 0, how many passwords are possible?
- 32. In a game, you win if you roll two dice and get a total of 7 or 11.
 - (a) List all ways to get a total of 7
 - (b) List all ways to get a total of 11
 - (c) What is the probability of winning?
 - (d) If you play 100 games, estimate how many you would win
 - (e) Is this a fair game if winning and losing have equal prizes?

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$