A Level Pure Mathematics Practice Test 1: Algebra and Functions

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Algebraic Manipulation

1. Simplify these expressions:

(a)
$$\frac{x^2-9}{x^2+6x+9}$$

(b)
$$\frac{2x^2-8}{x^2-5x+6}$$

(c)
$$\frac{x^3-8}{x^2-4}$$

(d)
$$\frac{x^4-16}{x^2+2x-8}$$

2. Factorize completely:

(a)
$$x^3 + 6x^2 + 12x + 8$$

(b)
$$8x^3 - 27$$

(c)
$$x^4 - 1$$

(d)
$$x^6 - 64$$

(e)
$$x^4 + 4x^2 + 4$$

(f)
$$x^3 - 3x^2 - 4x + 12$$

3. Express as single fractions in simplest form:

(a)
$$\frac{2}{x-1} + \frac{3}{x+2}$$

(b)
$$\frac{x}{x^2-4} - \frac{1}{x+2}$$

(c)
$$\frac{2x+1}{x^2+x-2} + \frac{x-3}{x^2-1}$$

(d)
$$\frac{1}{x} + \frac{1}{x-1} - \frac{2}{x^2-x}$$

4. Use the binomial theorem to expand:

(a)
$$(2x+3)^4$$

(b)
$$(x - \frac{1}{x})^5$$

(c)
$$(1+2x)^6$$
, and find the coefficient of x^4

(d) Find the constant term in the expansion of
$$(x^2 + \frac{2}{x})^9$$

5. Simplify using laws of indices:

(a)
$$\frac{2^{3x} \cdot 4^{x-1}}{8^{x+2}}$$

- (b) $\frac{27^{2x-1} \cdot 9^{x+1}}{3^{5x-2}}$
- (c) $(x^{\frac{2}{3}})^{\frac{3}{4}} \cdot x^{-\frac{1}{2}}$
- (d) $\frac{(2x)^3 \cdot (3x^2)^2}{6x^4}$

Section B: Linear and Quadratic Equations

- 6. Solve these equations:
 - (a) $\frac{2x-1}{3} \frac{x+2}{4} = \frac{1}{2}$
 - (b) $\frac{x}{x-2} = \frac{3}{x+1}$
 - (c) $\sqrt{2x+3} = x$
 - (d) $\frac{1}{x-1} + \frac{1}{x+1} = \frac{1}{2}$
- 7. Solve these quadratic equations, leaving answers in exact form where appropriate:
 - (a) $2x^2 7x + 3 = 0$
 - (b) $x^2 + 4x 1 = 0$
 - (c) $3x^2 = 5x + 2$
 - (d) $(2x-1)^2 = 3(x+2)$
- 8. For the quadratic equation $kx^2 + (k+3)x + 1 = 0$:
 - (a) Find the discriminant in terms of k
 - (b) Find the values of k for which the equation has equal roots
 - (c) Find the values of k for which the equation has no real roots
 - (d) When k = 2, find the sum and product of the roots
- 9. The quadratic $ax^2 + bx + c = 0$ has roots α and β .
 - (a) Express $\alpha + \beta$ and $\alpha\beta$ in terms of a, b, and c
 - (b) Find a quadratic equation with roots 2α and 2β
 - (c) Find a quadratic equation with roots $\alpha + 1$ and $\beta + 1$
 - (d) If $\alpha^2 + \beta^2 = 10$ and $\alpha + \beta = 4$, find $\alpha\beta$

Section C: Cubic and Higher Order Equations

- 10. Solve these cubic equations:
 - (a) $x^3 6x^2 + 11x 6 = 0$
 - (b) $x^3 + 2x^2 5x 6 = 0$
 - (c) $2x^3 x^2 13x 6 = 0$
 - (d) $x^3 7x + 6 = 0$
- 11. Given that x = 2 is a root of $x^3 + px^2 + qx 8 = 0$:
 - (a) Find a relationship between p and q
 - (b) If the sum of all three roots is -1, find p and q
 - (c) Hence find all three roots
 - (d) Verify your answer by substitution
- 12. Solve these quartic equations:

(a)
$$x^4 - 5x^2 + 4 = 0$$

(b)
$$x^4 - 13x^2 + 36 = 0$$

(c)
$$(x^2 + x)^2 - 8(x^2 + x) + 12 = 0$$

(d)
$$x^4 + x^3 - 7x^2 - x + 6 = 0$$
 (given that $x = 1$ is a root)

13. Use the substitution $y = x + \frac{1}{x}$ to solve:

(a)
$$x^2 + \frac{1}{x^2} = 7$$

(b)
$$2x^2 + 3x + \frac{3}{x} + \frac{2}{x^2} = 0$$

Section D: Functions - Definition and Notation

14. For the function $f(x) = \frac{2x+1}{x-3}$ where $x \neq 3$:

(a) Find
$$f(0)$$
, $f(1)$, and $f(-2)$

- (b) Solve f(x) = 1
- (c) Find the value of x for which f(x) is undefined
- (d) Find the range of f(x)

15. Given $g(x) = x^2 - 4x + 3$:

- (a) Express g(x) in the form $(x-a)^2 + b$
- (b) State the minimum value of g(x) and the value of x at which it occurs
- (c) Solve g(x) = 0
- (d) Find the range of g(x)

16. For $h(x) = \sqrt{9 - x^2}$:

- (a) Find the domain of h(x)
- (b) Find the range of h(x)
- (c) Sketch the graph of y = h(x)
- (d) Solve h(x) = 2

17. Define
$$k(x) = \begin{cases} x^2 & \text{if } x < 0\\ 2x + 1 & \text{if } 0 \le x < 2\\ 5 & \text{if } x \ge 2 \end{cases}$$

- (a) Find k(-2), k(0), k(1.5), and k(3)
- (b) Is k(x) continuous at x = 0? Justify your answer
- (c) Is k(x) continuous at x = 2? Justify your answer
- (d) Sketch the graph of y = k(x)

Section E: Composite and Inverse Functions

18. Given f(x) = 2x + 3 and $g(x) = x^2 - 1$:

- (a) Find f(g(x)) and g(f(x))
- (b) Calculate f(g(2)) and g(f(2))
- (c) Solve f(g(x)) = 11
- (d) Find $(f \circ g)^{-1}(x)$

- 19. For $p(x) = \frac{x+1}{x-2}$ where $x \neq 2$:
 - (a) Find $p^{-1}(x)$
 - (b) Verify that $p(p^{-1}(x)) = x$
 - (c) State the domain and range of $p^{-1}(x)$
 - (d) Solve $p(x) = p^{-1}(x)$
- 20. Given f(x) = 3x 2 and $g(x) = \frac{1}{x+1}$ where $x \neq -1$:
 - (a) Find $(f \circ g)(x)$ and state its domain
 - (b) Find $(g \circ f)(x)$ and state its domain
 - (c) Find $(f \circ g)^{-1}(x)$
 - (d) Verify your answer by showing $(f \circ g)((f \circ g)^{-1}(x)) = x$
- 21. The function $h(x) = x^2 + 4x + 1$ is defined for $x \ge -2$.
 - (a) Explain why the domain restriction is necessary for h^{-1} to exist
 - (b) Find $h^{-1}(x)$
 - (c) State the domain and range of $h^{-1}(x)$
 - (d) Sketch h(x) and $h^{-1}(x)$ on the same axes

Section F: Graphing Functions

- 22. Sketch the graphs of these functions, clearly showing key features:
 - (a) $y = x^3 3x^2 + 2$
 - (b) $y = \frac{2x+1}{x-1}$
 - (c) $y = |x^2 4x + 3|$
 - (d) $y = \frac{x^2 1}{x^2 + 1}$
- 23. For the rational function $f(x) = \frac{x^2 + x 2}{x^2 4}$:
 - (a) Find the domain of f(x)
 - (b) Find the x and y intercepts
 - (c) Identify any vertical asymptotes
 - (d) Find the horizontal asymptote
 - (e) Sketch the graph of y = f(x)
- 24. Analyze the function $g(x) = \frac{2x^2-8}{x^2+x-6}$:
 - (a) Factorize the numerator and denominator
 - (b) Simplify g(x) and state its domain
 - (c) Find any asymptotes
 - (d) Find the coordinates of any stationary points
 - (e) Sketch the graph of y = g(x)
- 25. For the polynomial $p(x) = x^4 4x^3 + 4x^2$:
 - (a) Factorize p(x) completely
 - (b) Find the roots and their multiplicities
 - (c) Determine the behavior at each root
 - (d) Find p'(x) and locate stationary points
 - (e) Sketch the graph of y = p(x)

Section G: Function Transformations

- 26. Given the function $f(x) = x^2$, describe the transformations and sketch:
 - (a) y = f(x-2) + 3
 - (b) y = -2f(x+1)
 - (c) y = f(2x) 4
 - (d) $y = \frac{1}{2}f(-x) + 1$
- 27. The graph of y = f(x) has vertex at (3, -2) and passes through (1, 2) and (5, 2). Find the vertex and two other points for:
 - (a) y = f(x) + 4
 - (b) y = f(x-2)
 - (c) y = 3f(x)
 - (d) y = f(2x)
 - (e) y = -f(x)
 - (f) y = f(-x)
- 28. Given that g(x) = |x 1| + 2:
 - (a) Describe the transformations applied to y = |x|
 - (b) State the vertex of the graph
 - (c) Find the range of g(x)
 - (d) Solve g(x) = 5
 - (e) Sketch the graph of y = g(x)
- 29. The function $h(x) = \sin x$ is transformed to $k(x) = 3\sin(2x + \frac{\pi}{3}) 1$.
 - (a) Identify each transformation in the correct order
 - (b) State the amplitude of k(x)
 - (c) State the period of k(x)
 - (d) Find the phase shift
 - (e) Find the vertical shift
 - (f) Sketch one complete cycle of y = k(x)

Section H: Special Functions and Applications

- 30. For the exponential function $f(x) = 3^{x-1} + 2$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Find the horizontal asymptote
 - (d) Solve f(x) = 11
 - (e) Find $f^{-1}(x)$ and state its domain and range
- 31. For the logarithmic function $g(x) = \log_2(x+3) 1$:
 - (a) State the domain and range
 - (b) Find the x-intercept
 - (c) Find the vertical asymptote

- (d) Solve q(x) = 2
- (e) Express g(x) in terms of natural logarithms
- 32. A function is defined as $f(x) = \frac{ax+b}{cx+d}$ where $ad bc \neq 0$.
 - (a) Find the domain of f(x)
 - (b) Find $f^{-1}(x)$
 - (c) Show that $(f^{-1} \circ f)(x) = x$
 - (d) Under what condition is $f(x) = f^{-1}(x)$?
- 33. The modulus function |x| can be written as: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
 - (a) Sketch y = |2x 3|
 - (b) Solve |2x 3| = 5
 - (c) Solve |2x 3| < 4
 - (d) Find the range of values for which $|2x-3| \ge 1$

Section I: Problem Solving and Applications

- 34. A rectangular enclosure is to be built against a wall using 60 meters of fencing. Let x be the width perpendicular to the wall.
 - (a) Express the length parallel to the wall in terms of x
 - (b) Show that the area A = x(60 2x)
 - (c) Find the value of x that maximizes the area
 - (d) Calculate the maximum area
 - (e) State the domain of the function in this context
- 35. The profit P (in thousands of pounds) from selling x thousand items is given by: $P(x) = -2x^2 + 16x 24$
 - (a) Express P(x) in completed square form
 - (b) Find the break-even points (where P(x) = 0)
 - (c) Determine the production level for maximum profit
 - (d) Calculate the maximum profit
 - (e) For what range of production levels is the profit positive?
- 36. A water tank is being filled at a rate that depends on time. The volume V (in liters) after t minutes is: $V(t) = 100t 2t^2$ for $0 \le t \le 25$
 - (a) Find when the tank is being filled fastest
 - (b) Calculate the maximum volume in the tank
 - (c) Determine when the tank starts emptying
 - (d) Find the total time to fill and empty the tank
- 37. A function $f(x) = \frac{x^2-4}{x^2+1}$ models a physical process.
 - (a) Find the domain and range of f(x)
 - (b) Determine the horizontal asymptote and explain its physical meaning
 - (c) Find the values of x where f(x) = 0

- (d) Analyze the behavior as $x \to \pm \infty$
- (e) Sketch the graph and discuss any symmetry
- 38. Two functions are related by g(x) = f(2x 1) + 3 where $f(x) = x^2$.
 - (a) Find an explicit expression for g(x)
 - (b) Describe the transformations that map f to g
 - (c) Find the vertex of the parabola y = g(x)
 - (d) If f has domain [0, 4], find the domain of g
 - (e) Solve g(x) = f(x) and interpret geometrically

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$