A Level Pure Mathematics Practice Test 3: Algebra and Functions

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 2 hours

Section A: Algebraic Manipulation

1. Simplify these expressions:

(a)
$$\frac{x^2-25}{x^2+10x+25}$$

(b) $\frac{4x^2-9}{2x^2+7x+6}$
(c) $\frac{x^3-64}{x^2+4x+16}$

(b)
$$\frac{4x^2-9}{2x^2+7x+6}$$

(c)
$$\frac{x^3-64}{x^2+4x+16}$$

(d)
$$\frac{x^4-1}{x^3+x^2+x+1}$$

2. Factorize completely:

(a)
$$x^3 + 9x^2 + 27x + 27$$

(b)
$$64x^3 - 1$$

(c)
$$x^4 - 256$$

(d)
$$x^8 - 1$$

(e)
$$x^4 + 8x^2 + 16$$

(f)
$$x^3 - 5x^2 + 6x - 30$$

3. Express as single fractions in simplest form:

(a)
$$\frac{4}{x-2} + \frac{5}{x+3}$$

(b)
$$\frac{3x}{x^2-1} - \frac{2}{x+1}$$

(c)
$$\frac{x+3}{x^2-3x+2} + \frac{2x-1}{x^2+x-6}$$

(d)
$$\frac{3}{x+1} - \frac{2}{x-1} + \frac{4}{x^2-1}$$

4. Use the binomial theorem to expand:

(a)
$$(4x-1)^4$$

(b)
$$(2x - \frac{3}{x})^5$$

(c)
$$(3+2x)^6$$
, and find the coefficient of x^2

- (d) Find the term independent of x in the expansion of $(x^4 \frac{1}{2x^2})^{12}$
- 5. Simplify using laws of indices:

(a)
$$\frac{5^{x+2} \cdot 25^{2x-1}}{125^x}$$

- (b) $\frac{32^{x+1} \cdot 16^{2x}}{8^{3x-2}}$
- (c) $(x^{\frac{4}{5}})^{\frac{5}{8}} \cdot x^{-\frac{3}{4}}$
- (d) $\frac{(4x)^3 \cdot (5x^2)^2}{20x^6}$

Section B: Linear and Quadratic Equations

- 6. Solve these equations:
 - (a) $\frac{4x+3}{5} \frac{3x-1}{2} = \frac{7}{10}$ (b) $\frac{3x}{x-1} = \frac{5}{x+2}$

 - (c) $\sqrt{4x-3} = 2x-3$
 - (d) $\frac{3}{x-2} \frac{2}{x+3} = \frac{1}{4}$
- 7. Solve these quadratic equations, leaving answers in exact form where appropriate:
 - (a) $5x^2 9x + 2 = 0$
 - (b) $x^2 8x + 3 = 0$
 - (c) $4x^2 = 7x + 2$
 - (d) $(4x-3)^2 = 5(2x+1)$
- 8. For the quadratic equation $3x^2 + (2k+1)x + k 2 = 0$:
 - (a) Find the discriminant in terms of k
 - (b) Find the values of k for which the equation has equal roots
 - (c) Find the values of k for which the equation has no real roots
 - (d) When k = 1, find the sum and product of the roots
- 9. The quadratic $mx^2 + nx + p = 0$ has roots α and β .
 - (a) Express $\alpha + \beta$ and $\alpha\beta$ in terms of m, n, and p
 - (b) Find a quadratic equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
 - (c) Find a quadratic equation with roots α^2 and β^2
 - (d) If $\alpha^2 + \beta^2 = 18$ and $\alpha + \beta = 5$, find $\alpha\beta$

Section C: Cubic and Higher Order Equations

- 10. Solve these cubic equations:
 - (a) $x^3 5x^2 + 8x 4 = 0$
 - (b) $x^3 + x^2 8x 12 = 0$
 - (c) $4x^3 3x^2 25x 6 = 0$
 - (d) $x^3 9x^2 + 26x 24 = 0$
- 11. Given that x = 3 is a root of $x^3 2x^2 + mx 12 = 0$:
 - (a) Find the value of m
 - (b) If the product of all three roots is 12, verify this result
 - (c) Find all three roots
 - (d) Write the equation in factored form
- 12. Solve these quartic equations:

(a)
$$x^4 - 17x^2 + 16 = 0$$

(b)
$$x^4 - 6x^2 + 8 = 0$$

(c)
$$(x^2 - 3x)^2 - 2(x^2 - 3x) - 8 = 0$$

(d)
$$x^4 - 3x^3 - 3x^2 + 11x - 6 = 0$$
 (given that $x = 2$ is a root)

13. Use the substitution $t = x^2 + \frac{1}{x^2}$ to solve:

(a)
$$x^4 + \frac{1}{x^4} = 23$$

(b)
$$4x^4 - 5x^2 + \frac{5}{x^2} - \frac{4}{x^4} = 0$$

Section D: Functions - Definition and Notation

14. For the function $f(x) = \frac{4x-3}{2x+1}$ where $x \neq -\frac{1}{2}$:

(a) Find
$$f(0)$$
, $f(1)$, and $f(-2)$

- (b) Solve f(x) = 3
- (c) Find the value of x for which f(x) is undefined
- (d) Find the range of f(x)

15. Given $g(x) = x^2 - 8x + 12$:

- (a) Express g(x) in the form $(x-h)^2 + k$
- (b) State the minimum value of g(x) and the value of x at which it occurs
- (c) Solve g(x) = 0
- (d) Find the range of q(x)

16. For $h(x) = \sqrt{25 - x^2}$:

- (a) Find the domain of h(x)
- (b) Find the range of h(x)
- (c) Sketch the graph of y = h(x)
- (d) Solve h(x) = 4

17. Define
$$k(x) = \begin{cases} 2x^2 & \text{if } x < -1\\ x+3 & \text{if } -1 \le x < 3\\ 6 & \text{if } x \ge 3 \end{cases}$$

- (a) Find k(-2), k(-1), k(2), and k(4)
- (b) Is k(x) continuous at x = -1? Justify your answer
- (c) Is k(x) continuous at x = 3? Justify your answer
- (d) Sketch the graph of y = k(x)

Section E: Composite and Inverse Functions

18. Given f(x) = 4x + 1 and $g(x) = x^2 - 3$:

- (a) Find f(g(x)) and g(f(x))
- (b) Calculate f(g(3)) and g(f(3))
- (c) Solve f(g(x)) = 21
- (d) Find $(f \circ g)^{-1}(x)$

- 19. For $p(x) = \frac{3x+2}{x-4}$ where $x \neq 4$:
 - (a) Find $p^{-1}(x)$
 - (b) Verify that $p(p^{-1}(x)) = x$
 - (c) State the domain and range of $p^{-1}(x)$
 - (d) Solve $p(x) = p^{-1}(x)$
- 20. Given f(x) = 5x 3 and $g(x) = \frac{2}{x+4}$ where $x \neq -4$:
 - (a) Find $(f \circ g)(x)$ and state its domain
 - (b) Find $(g \circ f)(x)$ and state its domain
 - (c) Find $(f \circ g)^{-1}(x)$
 - (d) Verify your answer by showing $(f \circ g)((f \circ g)^{-1}(x)) = x$
- 21. The function $h(x) = x^2 + 10x + 3$ is defined for $x \ge -5$.
 - (a) Explain why the domain restriction is necessary for h^{-1} to exist
 - (b) Find $h^{-1}(x)$
 - (c) State the domain and range of $h^{-1}(x)$
 - (d) Sketch h(x) and $h^{-1}(x)$ on the same axes

Section F: Graphing Functions

- 22. Sketch the graphs of these functions, clearly showing key features:
 - (a) $y = x^3 6x^2 + 9x + 1$
 - (b) $y = \frac{4x-3}{2x+1}$
 - (c) $y = |x^2 8x + 15|$
 - (d) $y = \frac{x^2 9}{x^2 + 4}$
- 23. For the rational function $f(x) = \frac{x^2 2x 3}{x^2 9}$:
 - (a) Find the domain of f(x)
 - (b) Find the x and y intercepts
 - (c) Identify any vertical asymptotes
 - (d) Find the horizontal asymptote
 - (e) Sketch the graph of y = f(x)
- 24. Analyze the function $g(x) = \frac{5x^2 20}{x^2 3x 10}$:
 - (a) Factorize the numerator and denominator
 - (b) Simplify g(x) and state its domain
 - (c) Find any asymptotes
 - (d) Find the coordinates of any stationary points
 - (e) Sketch the graph of y = g(x)
- 25. For the polynomial $p(x) = x^4 6x^3 + 9x^2$:
 - (a) Factorize p(x) completely
 - (b) Find the roots and their multiplicities
 - (c) Determine the behavior at each root
 - (d) Find p'(x) and locate stationary points
 - (e) Sketch the graph of y = p(x)

Section G: Function Transformations

- 26. Given the function $f(x) = x^2$, describe the transformations and sketch:
 - (a) y = f(x-4) + 1
 - (b) $y = -\frac{1}{2}f(x+2)$
 - (c) y = f(3x) 5
 - (d) y = 4f(-x) + 2
- 27. The graph of y = f(x) has vertex at (1, -3) and passes through (-1, 1) and (3, 1). Find the vertex and two other points for:
 - (a) y = f(x) + 2
 - (b) y = f(x 3)
 - (c) $y = \frac{1}{2}f(x)$
 - (d) y = f(4x)
 - (e) y = -f(x)
 - (f) y = f(-x)
- 28. Given that g(x) = |x 3| + 4:
 - (a) Describe the transformations applied to y = |x|
 - (b) State the vertex of the graph
 - (c) Find the range of g(x)
 - (d) Solve g(x) = 7
 - (e) Sketch the graph of y = g(x)
- 29. The function $h(x) = \tan x$ is transformed to $k(x) = 2\tan(\frac{x}{2} + \frac{\pi}{6}) 3$.
 - (a) Identify each transformation in the correct order
 - (b) State the period of k(x)
 - (c) Find the phase shift
 - (d) Find the vertical shift
 - (e) Find the vertical asymptotes in the interval $[0, 4\pi]$
 - (f) Sketch one complete cycle of y = k(x)

Section H: Special Functions and Applications

- 30. For the exponential function $f(x) = 5^{x-3} + 1$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Find the horizontal asymptote
 - (d) Solve f(x) = 26
 - (e) Find $f^{-1}(x)$ and state its domain and range
- 31. For the logarithmic function $g(x) = \log_4(2x 1) + 3$:
 - (a) State the domain and range
 - (b) Find the x-intercept
 - (c) Find the vertical asymptote

- (d) Solve q(x) = 5
- (e) Express g(x) in terms of natural logarithms
- 32. A function is defined as $f(x) = \frac{kx+l}{mx+n}$ where $kn lm \neq 0$.
 - (a) Find the domain of f(x)
 - (b) Find $f^{-1}(x)$
 - (c) Show that $(f^{-1} \circ f)(x) = x$
 - (d) Find the condition for f(x) to be its own inverse
- 33. The modulus function |x| can be written as: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
 - (a) Sketch y = |4x 1|
 - (b) Solve |4x 1| = 9
 - (c) Solve |4x 1| < 6
 - (d) Find the range of values for which $|4x 1| \ge 3$

Section I: Problem Solving and Applications

- 34. A cylindrical container with an open top is to be made from 300 cm² of material. Let r be the radius of the base.
 - (a) Express the height h in terms of r
 - (b) Show that the volume $V = \frac{300r \pi r^3}{2}$
 - (c) Find the value of r that maximizes the volume
 - (d) Calculate the maximum volume
 - (e) State the domain of the function in this context
- 35. The cost C (in pounds) of producing x items is given by: $C(x) = 2x^2 20x + 80$
 - (a) Express C(x) in completed square form
 - (b) Find the production level that minimizes cost
 - (c) Calculate the minimum cost
 - (d) If items sell for £15 each, find the profit function P(x)
 - (e) Determine the break-even points
- 36. A projectile's distance d (in meters) from a target after t seconds is: $d(t) = 2t^2 16t + 50$ for $t \ge 0$
 - (a) Find when the projectile is closest to the target
 - (b) Calculate the minimum distance from the target
 - (c) Determine when the projectile is 42 meters from the target
 - (d) Find the distance after 6 seconds
- 37. A function $f(x) = \frac{x^2 16}{x^2 + 4}$ represents an efficiency ratio.
 - (a) Find the domain and range of f(x)
 - (b) Determine the horizontal asymptote and explain its meaning
 - (c) Find the values of x where f(x) = 0
 - (d) Analyze the behavior as $x \to \pm \infty$

- (e) Sketch the graph and identify any symmetry
- 38. Two functions are related by g(x) = f(4x 3) + 2 where $f(x) = x^2$.
 - (a) Find an explicit expression for g(x)
 - (b) Describe the transformations that map f to g
 - (c) Find the vertex of the parabola y = g(x)
 - (d) If f has domain [-3,2], find the domain of g
 - (e) Solve g(x) = f(x) and interpret the solution graphically

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$