GCSE Higher Mathematics Practice Test 4: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 6^2
 - (b) 4^{-3}
 - (c) 11^0
 - (d) $(-6)^2$
 - (e) $(-4)^3$
 - $(f) 8^{-2}$
- 2. Write these as single powers:
 - (a) $5^3 \times 5^8$
 - (b) $8^7 \div 8^4$
 - (c) $(3^5)^2$
 - (d) $7^{-4} \times 7^{10}$
 - (e) $\frac{9^5}{9^{-6}}$
 - $(f) (4^2)^{-5}$
- 3. Evaluate these fractional indices:
 - (a) $49^{\frac{1}{2}}$
 - (b) $125^{\frac{1}{3}}$
 - (c) $256^{\frac{3}{4}}$
 - (d) $32768^{\frac{2}{5}}$
 - (e) $343^{\frac{2}{3}}$
 - (f) $128^{-\frac{4}{7}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{144}$
 - (b) $\sqrt[3]{343}$

- (c) $\sqrt[4]{256}$
- (d) $\sqrt{0.64}$
- (e) $\sqrt[3]{-216}$
- (f) $\sqrt[5]{3125}$
- 5. Express in index form:
 - (a) $\sqrt{17}$
 - (b) $\sqrt[3]{11}$
 - (c) $\frac{1}{\sqrt{7}}$
 - (d) $\sqrt[4]{w^9}$
 - (e) $\frac{1}{\sqrt[3]{d^7}}$
 - (f) $\sqrt{w} \times \sqrt[3]{w}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $5^4 \times 5^{-7} \times 5^8$
 - (b) $\frac{7^9 \times 7^{-5}}{7^{-4}}$
 - (c) $(6^2)^{-4} \times 6^{13}$
 - (d) $\frac{4^{-5} \times 4^{11}}{4^4}$
- 7. Evaluate these expressions:
 - (a) $343^{\frac{2}{3}}$
 - (b) $81^{-\frac{3}{4}}$
 - (c) $1024^{\frac{3}{5}}$
 - (d) $729^{-\frac{2}{3}}$
 - (e) $512^{\frac{1}{3}}$
 - (f) $3125^{-\frac{4}{5}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{5}{6}} \times x^{\frac{1}{3}}$
 - (b) $\frac{t^{\frac{8}{3}}}{t^{\frac{1}{5}}}$
 - (c) $(d^{\frac{1}{5}})^{10}$
 - (d) $\sqrt{w} \times w^{\frac{1}{6}}$
 - (e) $\frac{\sqrt[3]{k^7}}{\sqrt{k}}$
 - (f) $(v^{-\frac{1}{5}})^{-10}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{7} \times 7^5$
 - (b) $\frac{11^3}{\sqrt[3]{11}}$
 - (c) $\sqrt[4]{8^9} \times 8^{-\frac{2}{3}}$
 - (d) $\frac{\sqrt{17}}{\sqrt[3]{17^7}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{54}$
 - (b) $\sqrt{84}$
 - (c) $\sqrt{96}$
 - (d) $\sqrt{147}$
 - (e) $\sqrt{192}$
 - (f) $\sqrt{600}$
- 11. Simplify these expressions:
 - (a) $6\sqrt{11} + 9\sqrt{11}$
 - (b) $12\sqrt{5} 5\sqrt{5}$
 - (c) $\sqrt{32} + \sqrt{50}$
 - (d) $\sqrt{84} \sqrt{21}$
 - (e) $5\sqrt{12} + 7\sqrt{27}$
 - (f) $\sqrt{147} \sqrt{108} + \sqrt{27}$
- 12. Multiply and simplify:
 - (a) $\sqrt{7} \times \sqrt{28}$
 - (b) $\sqrt{18} \times \sqrt{72}$
 - (c) $6\sqrt{2} \times 4\sqrt{8}$
 - (d) $\sqrt{14} \times \sqrt{56}$
 - (e) $\sqrt{6} \times \sqrt{24} \times \sqrt{96}$
 - (f) $7\sqrt{5} \times 4\sqrt{20}$
- 13. Expand and simplify:
 - (a) $(5+\sqrt{7})(2-\sqrt{7})$
 - (b) $(4 + \sqrt{13})(1 + 5\sqrt{13})$
 - (c) $(7 \sqrt{11})^2$
 - (d) $(\sqrt{17} + \sqrt{3})(\sqrt{17} \sqrt{3})$
 - (e) $(5\sqrt{7}+1)(5\sqrt{7}-1)$
 - (f) $(\sqrt{13} + 5)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{13}}$
 - (b) $\frac{9}{\sqrt{17}}$
 - (c) $\frac{\sqrt{7}}{\sqrt{28}}$
 - (d) $\frac{10}{5\sqrt{2}}$
 - (e) $\frac{1}{4+\sqrt{7}}$
 - $(f) \ \frac{5}{1-\sqrt{13}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{7}{5+\sqrt{11}}$
 - (b) $\frac{11}{4-\sqrt{19}}$
 - (c) $\frac{\sqrt{7}}{1+\sqrt{7}}$
 - (d) $\frac{5\sqrt{13}}{4+\sqrt{13}}$
 - (e) $\frac{1}{\sqrt{15}-\sqrt{7}}$
 - (f) $\frac{\sqrt{13}+4}{\sqrt{13}-5}$
- 16. Simplify these expressions completely:
 - (a) $\frac{\sqrt{24} + \sqrt{54}}{\sqrt{6}}$
 - (b) $\frac{\sqrt{63}-\sqrt{28}}{\sqrt{7}}$
 - (c) $\sqrt{(6+\sqrt{13})(6-\sqrt{13})}$
 - (d) $\sqrt{96} 5\sqrt{6} + \sqrt{54}$
 - (e) $(\sqrt{7} + \sqrt{28})^2$
 - (f) $\frac{\sqrt{80}}{\sqrt{5}} + \frac{\sqrt{45}}{\sqrt{5}}$
- 17. Prove that:
 - (a) $(\sqrt{f} + \sqrt{g})(\sqrt{f} \sqrt{g}) = f g$
 - (b) $\frac{1}{\sqrt{e}+\sqrt{h}} = \frac{\sqrt{e}-\sqrt{h}}{e-h}$
 - (c) $(e + h\sqrt{j})^2 = e^2 + 2eh\sqrt{j} + h^2j$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 678000
 - (b) 0.000094
 - (c) 4560000000
 - (d) 0.0000000287
 - (e) 945.6
 - (f) 0.00947
- 19. Write these in ordinary form:
 - (a) 7.8×10^3
 - (b) 5.69×10^{-7}
 - (c) 8.321×10^{-10}
 - (d) 4.36×10^{13}
 - (e) 9.5×10^{-5}
 - (f) 6.78×10^8
- 20. Calculate, giving answers in standard form:

- (a) $(7 \times 10^7) \times (6 \times 10^9)$
- (b) $(8 \times 10^{-5}) \times (9 \times 10^{10})$
- (c) $(15 \times 10^8) \div (5 \times 10^{-3})$
- (d) $(12 \times 10^{-7}) \div (6 \times 10^{-10})$
- (e) $(7 \times 10^6)^2$
- (f) $\sqrt{36 \times 10^{14}}$
- 21. Calculate these more complex expressions:
 - (a) $(5.6 \times 10^6) \times (1.75 \times 10^{-8})$
 - (b) $\frac{11.2 \times 10^9}{2.8 \times 10^{-6}}$
 - (c) $(6.3 \times 10^{-5}) + (7.8 \times 10^{-6})$
 - (d) $(8.1 \times 10^8) (5.4 \times 10^7)$
 - (e) $\frac{(5.4\times10^4)\times(4.5\times10^{-5})}{8.1\times10^{-3}}$
 - (f) $(4.84 \times 10^{12})^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):
 - (a) $\frac{4}{9} + \frac{5}{18}$
 - (b) $\frac{11}{15} \frac{7}{20}$
 - (c) $\frac{12}{13} \times \frac{26}{18}$
 - (d) $\frac{10}{21} \div \frac{15}{26}$
 - (e) $\frac{8}{9} \frac{4}{15} + \frac{7}{45}$
 - (f) $(\frac{5}{8})^{-}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{4}$
 - (b) $0.\overline{63}$
 - (c) $0.4\overline{7}$
 - (d) $0.\overline{714285}$
 - (e) $3.2\overline{8}$
 - (f) $0.73\overline{6}$
- 24. Work out these percentage calculations:
 - (a) Increase 540 by 45%
 - (b) Decrease 720 by 24%
 - (c) Find 27.5% of 840
 - (d) What percentage is 108 out of 144?
 - (e) If 65% of a number is 169, find the number
 - (f) A price increases from £90 to £99. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 50% increase, a price is £225. Find the original price
 - (b) After a 45% decrease, a quantity is 99. Find the original quantity
 - (c) The value of a car decreases by 35% each year. If it's worth £12675 now, what was it worth 2 years ago?
 - (d) An investment grows by 5% per year. After 2 years it's worth £2205. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $5^{-2} + 7^0 8^{-1}$
 - (b) $\sqrt{49} \times 216^{\frac{1}{3}} 5^{-2}$
 - (c) $\frac{512^{\frac{2}{3}}-625^{\frac{3}{4}}}{36^{\frac{1}{2}}}$
 - (d) $25^{-\frac{1}{2}} + 64^{\frac{1}{2}} \times 4^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{7}{\sqrt{7}} + \frac{5}{\sqrt{28}}$
 - (b) $\sqrt{32} \times \sqrt{72} \sqrt{128}$
 - (c) $\frac{\sqrt{112}+\sqrt{63}}{\sqrt{7}}$
 - (d) $(5\sqrt{2}-4)^2$
- 28. Work with standard form in context:
 - (a) The mass of an alpha particle is 6.64×10^{-27} kg. Find the mass of 6.02×10^{23} alpha particles
 - (b) Seismic waves travel at 6.5×10^3 m/s. How far do they travel in one hour (use 1 hour = 3.6×10^3 seconds)?
 - (c) The thickness of a cell membrane is approximately 7.5×10^{-9} m. How many cell membranes would fit in a stack 3 mm high?
 - (d) A parallel processor handles 7.2×10^{12} operations per second. How many operations in 15 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{7}$ is irrational. (Use proof by contradiction: assume $\sqrt{7} = \frac{c}{d}$ where c and d are integers with no common factors)
- 30. The number β satisfies $\beta^2 = 3\beta 1$.
 - (a) Show that $\beta = \frac{3+\sqrt{5}}{2}$
 - (b) Calculate β to 4 decimal places
 - (c) Find $\frac{1}{\beta}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{5}+\sqrt{7}+\sqrt{11}}$. (Hint: First rationalize using $(\sqrt{5}+\sqrt{7})-\sqrt{11}$)
- 32. A rectangle has sides of length $(5+\sqrt{7})$ cm and $(5-\sqrt{7})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of cells quintuples every 6 hours. If there are initially 4×10^3 cells:
 - (a) How many cells after 24 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 8×10^8 cells?
- 34. Show that $\frac{1}{\sqrt{f}+\sqrt{g}} + \frac{1}{\sqrt{f}-\sqrt{g}} = \frac{2\sqrt{f}}{f-g}$

- 35. A sphere has volume $V = \frac{4}{3}\pi r^3$. If the volume is $500\pi~{\rm cm}^3$:
 - (a) Find the radius in surd form
 - (b) Find the surface area (use $A = 4\pi r^2$)
 - (c) Express both answers exactly
- 36. The equation $x^2 10x + 1 = 0$ has solutions $x = 5 \pm 2\sqrt{6}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{5+2\sqrt{6}} + \frac{1}{5-2\sqrt{6}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$