A Level Pure Mathematics Practice Test 2: Vectors

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Vector Basics and Notation

1. Given vectors
$$\mathbf{u} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$, calculate:

(a)
$$\mathbf{u} + \mathbf{v}$$

(b)
$$\mathbf{u} - \mathbf{v}$$

(c)
$$3u + 2v$$

(d)
$$4u - 3v$$

(e)
$$|\mathbf{u}|$$
 and $|\mathbf{v}|$

(f) A unit vector in the direction of
$$\mathbf{v}$$

2. Express these vectors in component form:

(a)
$$\overrightarrow{CD}$$
 where $C(3,1,-2)$ and $D(1,4,3)$

(b)
$$\overrightarrow{RS}$$
 where $R(-2,3,1)$ and $S(3,-1,4)$

(c) The position vector of point
$$E$$
 if $\overrightarrow{OE} = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$

(d)
$$\overrightarrow{DC}$$
 where $C(2, -3, 1)$ and $D(5, 2, -4)$

3. Given
$$\mathbf{m} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$
 and $\mathbf{n} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$:

(a) Find
$$|\mathbf{m}|$$
 and $|\mathbf{n}|$

(b) Calculate
$$\mathbf{m}+\mathbf{n}$$
 and $\mathbf{m}-\mathbf{n}$

(c) Find scalars
$$p$$
 and q such that $p\mathbf{m} + q\mathbf{n} = \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}$

(d) Determine if
$$\mathbf{m}$$
 and \mathbf{n} are parallel

4. Points
$$P$$
, Q , and R have position vectors $\mathbf{p} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$, and $\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

1

(a) Find vectors
$$\overrightarrow{PQ}$$
 and \overrightarrow{PR}

(b) Calculate the lengths
$$|PQ|$$
 and $|PR|$

- (c) Find the position vector of the midpoint of QR
- (d) Determine if triangle PQR is isosceles
- 5. Find the values of k for which these vectors are perpendicular:

(a)
$$\mathbf{x} = \begin{pmatrix} 3 \\ k \\ 2 \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} k \\ 1 \\ -3 \end{pmatrix}$

(b)
$$\mathbf{p} = \begin{pmatrix} 2\\3k\\1 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 1\\-2\\k \end{pmatrix}$

(c)
$$\mathbf{r} = k\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$
 and $\mathbf{s} = 2\mathbf{i} + k\mathbf{j} + 5\mathbf{k}$

Section B: Dot Product (Scalar Product)

6. Calculate the dot product of these vectors:

(a)
$$\mathbf{a} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$

(b)
$$\mathbf{p} = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$$
 and $\mathbf{q} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$

(c)
$$\mathbf{u} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix}$

(d)
$$\mathbf{r} = 3\mathbf{i} + 2\mathbf{j}$$
 and $\mathbf{s} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$

7. Find the angle between these pairs of vectors:

(a)
$$\mathbf{a} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

(b)
$$\mathbf{p} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

(c)
$$\mathbf{u} = 2\mathbf{i} + 3\mathbf{j}$$
 and $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$

(d)
$$\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
 and $\mathbf{s} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$

8. Use the dot product to verify these properties:

(a)
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$
 (commutative)

(b)
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$
 (distributive)

(c)
$$(k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b})$$
 for scalar k

(d)
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

9. Given vectors
$$\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, and $\mathbf{c} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$:

- (a) Show that **a** and **b** are perpendicular
- (b) Find the component of **c** in the direction of **a**
- (c) Calculate $|\mathbf{a} + \mathbf{b} + \mathbf{c}|$

- (d) Find the angle between $\mathbf{a} + \mathbf{b}$ and \mathbf{c}
- 10. A triangle has vertices at P(2,1,3), Q(1,4,2), and R(3,2,1).
 - (a) Find the vectors \overrightarrow{PQ} and \overrightarrow{PR}
 - (b) Calculate the angle $\angle QPR$
 - (c) Find the area of triangle PQR
 - (d) Determine if the triangle is right-angled

Section C: Cross Product (Vector Product)

11. Calculate the cross product of these vectors:

(a)
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$

(b)
$$\mathbf{p} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$
 and $\mathbf{q} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

(c)
$$\mathbf{u} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$

- (d) $\mathbf{r} = 2\mathbf{i} + \mathbf{j} \text{ and } \mathbf{s} = \mathbf{i} + 3\mathbf{k}$
- 12. Verify these properties of the cross product:
 - (a) $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$ (anti-commutative)
 - (b) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ (distributive)
 - (c) $\mathbf{a} \times \mathbf{a} = \mathbf{0}$
 - (d) $|\mathbf{a} \times \mathbf{b}|^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 (\mathbf{a} \cdot \mathbf{b})^2$
- 13. Find the area of the parallelogram spanned by:

(a)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$

- (b) $\mathbf{p} = 2\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$ and $\mathbf{q} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$
- (c) Vectors from origin to points (3, 1, 2) and (2, 3, 1)
- (d) \overrightarrow{PQ} and \overrightarrow{PR} where P(2,1,0), Q(1,3,2), R(3,0,1)

14. Given
$$\mathbf{a} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$:

- (a) Calculate $\mathbf{a} \times \mathbf{b}$
- (b) Verify that $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}
- (c) Find a unit vector perpendicular to both **a** and **b**
- (d) Calculate the area of triangle with sides **a** and **b**
- 15. Use the scalar triple product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ to find:

(a) The volume of parallelepiped with edges
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$

- (b) Whether points P(2,1,3), Q(1,3,2), R(3,2,1), S(2,2,2) are coplanar
- (c) The volume of tetrahedron with vertices at (0,0,0), (2,1,3), (1,2,1), (3,1,2)

Section D: Equations of Lines

- 16. Find the vector equation of the line:
 - (a) Passing through P(1,3,2) in direction $\begin{pmatrix} 2\\-1\\3 \end{pmatrix}$
 - (b) Passing through points A(2,1,4) and B(1,3,2)
 - (c) Through origin parallel to vector $3\mathbf{i} 2\mathbf{j} + 4\mathbf{k}$
 - (d) Through (3,2,1) parallel to the line $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$
- 17. Convert these to parametric form:

(a)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$

(b)
$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

- (c) Line through (2,3,1) and (1,0,4)
- (d) $\mathbf{r} = (2+3t)\mathbf{i} + (1-2t)\mathbf{j} + (4+t)\mathbf{k}$
- 18. Find where these lines intersect the coordinate planes:

(a)
$$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$
 and the *xy*-plane

(b)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and the xz -plane

- (c) Line through (3,2,1) and (1,4,0) with the yz-plane
- 19. Determine if these pairs of lines intersect, are parallel, or are skew:

(a)
$$L_1: \mathbf{r} = \begin{pmatrix} 2\\1\\3 \end{pmatrix} + t \begin{pmatrix} 1\\2\\1 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} + s \begin{pmatrix} 2\\1\\3 \end{pmatrix}$

(b)
$$L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix}$

- (c) Lines through (2,1,3) to (4,2,1) and (1,3,2) to (3,1,4)
- 20. Find the shortest distance between:

(a) Point
$$(1,3,2)$$
 and line $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

(b) Parallel lines
$$L_1: \mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

(c) Skew lines
$$L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

Section E: Equations of Planes

- 21. Find the equation of the plane:
 - (a) With normal vector $\begin{pmatrix} 1\\3\\-2 \end{pmatrix}$ passing through (2,1,4)
 - (b) Passing through points (2,0,0), (0,3,0), and (0,0,1)
 - (c) Containing the lines $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$
 - (d) Parallel to vectors $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$ and $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ through (2,2,2)
- 22. Convert between vector and Cartesian forms:

(a)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
 to Cartesian form

- (b) 3x 2y + z = 8 to vector form
- (c) 2x + y 3z = 6 to parametric form
- (d) $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = 7$ to Cartesian form
- 23. Find where these planes intersect coordinate axes:
 - (a) 2x + 3y z = 12
 - (b) x 3y + 2z = 6
 - (c) 3x + y + 2z = 18
 - (d) 2x + 2y + z = 6
- 24. Determine the relationship between these planes:
 - (a) $\Pi_1: 2x + y z = 4$ and $\Pi_2: 4x + 2y 2z = 8$
 - (b) $\Pi_1: x-2y+3z=5 \text{ and } \Pi_2: 2x+y-z=3$
 - (c) $\Pi_1: 3x + y + z = 6$ and $\Pi_2: 6x + 2y + 2z = 15$
 - (d) $\Pi_1: 2x y + 3z = 7$ and $\Pi_2: x + 2y z = 4$
- 25. Find the line of intersection of these planes:
 - (a) 2x + y + z = 5 and x y + 2z = 3
 - (b) 3x + y 2z = 6 and x 3y + z = 2
 - (c) 2x 3y + z = 4 and x + 2y 3z = 1
 - (d) x + 3y + 2z = 9 and 3x y + z = 7

Section F: Angles and Distances

- 26. Find the angle between these planes:
 - (a) 2x + y 3z = 4 and x 2y + z = 6
 - (b) 3x + 2y z = 8 and 2x 3y + 2z = 5

(c)
$$\mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = 3 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 4$$

(d)
$$3x + y + 2z = 9$$
 and $x - 2y + 3z = 6$

- 27. Calculate the distance from point to plane:
 - (a) Point (1,3,2) to plane 2x + y 3z = 4
 - (b) Point (3, -1, 4) to plane x 2y + 2z = 8
 - (c) Point (0,0,0) to plane 3x + 2y z = 15
 - (d) Point (2, 4, -1) to plane 2x 3y + z = 7
- 28. Find the angle between line and plane:

(a) Line
$$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 and plane $2x + y + z = 8$

(b) Line through (2,1,3) and (1,4,2) with plane 3x - y + 2z = 6

(c) Line
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 and plane $x + 2y - z = 4$

29. Determine where these lines intersect planes:

(a)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
 and $x + 2y + z = 12$

(b) Line through (2,3,1) and (1,1,4) with plane 3x - y + 2z = 8

(c)
$$\mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$
 and $2x - y + 3z = 15$

- 30. Find the reflection of point in plane:
 - (a) Point (3, 1, 2) in plane x + 2y z = 4
 - (b) Point (2, -1, 3) in plane 3x y + 2z = 8
 - (c) Point (1, 4, 0) in plane 2x + y + 3z = 6

Section G: Advanced Vector Geometry

- 31. A tetrahedron has vertices at P(2,0,0), Q(0,3,0), R(0,0,4), and S(2,2,2).
 - (a) Find the volume of the tetrahedron
 - (b) Calculate the area of face PQR
 - (c) Find the equation of the plane containing face PQR
 - (d) Determine the perpendicular distance from S to plane PQR
 - (e) Verify the volume using the distance formula
- 32. Three forces $\mathbf{F_1} = 2\mathbf{i} + 3\mathbf{j} 4\mathbf{k}$, $\mathbf{F_2} = \mathbf{i} 2\mathbf{j} + 5\mathbf{k}$, and $\mathbf{F_3} = -3\mathbf{i} + \mathbf{j} + \mathbf{k}$ act on a particle.
 - (a) Find the resultant force
 - (b) Calculate the magnitude of the resultant
 - (c) Find a fourth force needed for equilibrium

- (d) If the forces act at point (2, 1, 3), find the moment about the origin
- 33. A regular tetrahedron has vertices at (2,2,2), (2,-2,-2), (-2,2,-2), and (-2,-2,2).
 - (a) Verify that all edges have equal length
 - (b) Find the center of the tetrahedron
 - (c) Calculate the angle between any two faces
 - (d) Find the equation of the sphere circumscribing the tetrahedron
- 34. The position vectors of points A, B, and C are a, b, and c respectively.
 - (a) Express the centroid G in terms of \mathbf{a} , \mathbf{b} , and \mathbf{c}
 - (b) Show that $\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \mathbf{0}$
 - (c) If M is the midpoint of BC, express \overrightarrow{AM} in terms of position vectors
 - (d) Prove that the medians of triangle ABC meet at the centroid
- 35. A line passes through point P(1,3,2) and is perpendicular to the plane 3x y + 2z = 8.
 - (a) Find the vector equation of the line
 - (b) Calculate where the line intersects the plane
 - (c) Find the foot of perpendicular from P to the plane
 - (d) Calculate the distance from P to the plane

Section H: Applications and Problem Solving

- 36. A parallelogram PQRS has vertices P(2,1,3), Q(1,4,2), and R(3,2,5).
 - (a) Find the coordinates of vertex S
 - (b) Calculate the area of the parallelogram
 - (c) Find the lengths of the diagonals
 - (d) Determine if the parallelogram is a rhombus
 - (e) Calculate the angle between the diagonals
- 37. A spacecraft travels from station P(200, 150, 10) to station Q(500, 300, 15) (coordinates in km).
 - (a) Find the displacement vector \overrightarrow{PQ}
 - (b) Calculate the distance traveled
 - (c) If the journey takes 3 hours, find the average velocity vector
 - (d) Find the bearing of Q from P (projected onto horizontal plane)
 - (e) Calculate the angle of ascent
- 38. A pyramid has square base with vertices at (3,3,0), (-3,3,0), (-3,-3,0), (3,-3,0) and apex at (0,0,6).
 - (a) Find the volume of the pyramid
 - (b) Calculate the area of each triangular face
 - (c) Find the total surface area
 - (d) Determine the angle between a triangular face and the base
 - (e) Find the equation of the plane containing one triangular face

39. Two particles move along lines
$$L_1: \mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $L_2: \mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.

- (a) Show that the lines are skew
- (b) Find the shortest distance between the lines
- (c) If the particles start at t = s = 0 and move with constant speeds, when are they closest?
- (d) Calculate their closest approach distance
- (e) Find the common perpendicular to both lines
- 40. A sphere has center O(1, 2, -1) and radius 4.
 - (a) Write the equation of the sphere
 - (b) Find where the sphere intersects the plane x + 2y + z = 6
 - (c) Determine if the line $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ intersects the sphere
 - (d) Find the equation of the tangent plane at point (5, 2, -1)
 - (e) Calculate the volume and surface area of the sphere

Section I: Advanced Topics and Modeling

- 41. Prove these vector identities:
 - (a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$ (vector triple product)
 - (b) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$
 - (c) $|\mathbf{a} \times \mathbf{b}|^2 + |\mathbf{a} \cdot \mathbf{b}|^2 = |\mathbf{a}|^2 |\mathbf{b}|^2$ (Lagrange identity)
 - (d) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$
- 42. Three planes $\Pi_1 : 2x + y z = 4$, $\Pi_2 : x 2y + 3z = 6$, and $\Pi_3 : 3x + y + 2z = 9$ intersect.
 - (a) Find their common point of intersection
 - (b) Calculate the angles between each pair of planes
 - (c) Find the line of intersection of Π_1 and Π_2
 - (d) Determine the volume of the tetrahedron formed by the three planes and the origin
 - (e) Verify the intersection point lies on all three planes
- 43. A coordinate system undergoes rotation. The new basis vectors are: $\mathbf{e_1'} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{e_2'} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \mathbf{e_3'} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

- (a) Verify these form an orthonormal basis
- (b) Express vector $\begin{pmatrix} 2\\3\\1 \end{pmatrix}$ in the new coordinate system
- (c) Find the rotation matrix for this transformation
- (d) Calculate the axis and angle of rotation

44. A crystal has lattice vectors $\mathbf{a} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1.5 \\ 1.5\sqrt{3} \\ 0 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$.

- (a) Calculate the volume of the unit cell
- (b) Find the angles between the lattice vectors
- (c) Determine the reciprocal lattice vectors
- (d) Calculate the density if each unit cell contains 6 atoms of mass 1.5×10^{-23} g
- (e) Find the distance between parallel planes with Miller indices (2, 1, 0)
- 45. Design a vector-based model for a real-world application:
 - (a) Choose a scenario involving 3D geometry (navigation, animation, structural analysis)
 - (b) Define your coordinate system and relevant vectors clearly
 - (c) Set up vector equations describing the system
 - (d) Solve a specific problem using vector methods
 - (e) Discuss advantages of vector methods for your application
 - (f) Consider limitations and potential extensions of your model
- 46. A satellite orbits Earth in an elliptical path. At time t, its position vector is: $\mathbf{r}(t) = 6\cos(\omega t)\mathbf{i} + 4\sin(\omega t)\mathbf{j} + 2\mathbf{k}$
 - (a) Find the velocity vector $\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}$
 - (b) Calculate the acceleration vector $\mathbf{a}(t) = \frac{d\mathbf{v}}{dt}$
 - (c) Show that acceleration is always directed toward a point in the xy-plane
 - (d) Find the speed as a function of time
 - (e) Determine when the satellite is closest to the xy-plane
 - (f) Calculate the angular momentum $\mathbf{L} = \mathbf{r} \times m\mathbf{v}$
- 47. Vector calculus in 3D space involves del operator $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$.
 - (a) For scalar field $\phi(x, y, z) = x^2y + z^3$, find $\nabla \phi$
 - (b) For vector field $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$, calculate $\nabla \cdot \mathbf{F}$ (divergence)
 - (c) Find $\nabla \times \mathbf{F}$ (curl) for the same vector field
 - (d) Verify that $\nabla \times (\nabla \phi) = \mathbf{0}$ for any scalar field ϕ
 - (e) Show that $\nabla \cdot (\nabla \times \mathbf{F}) = 0$ for any vector field \mathbf{F}
- 48. Integration and applications:
 - (a) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$ and C is the curve from (0,0) to (2,1) along $y = \frac{x^2}{4}$
 - (b) Calculate the work done by force $\mathbf{F} = (y+z)\mathbf{i} + (x-z)\mathbf{j} + (x+y)\mathbf{k}$ moving a particle from (0,0,0) to (2,1,3)
 - (c) Find the flux of $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$ through the surface of unit sphere
 - (d) Apply Green's theorem to evaluate $\oint_C (x^2 y^2) dx + 2xy dy$ around a circle of radius 2

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$