GCSE Higher Mathematics Practice Test 2: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 3^4
 - (b) 2^{-3}
 - (c) 7^0
 - (d) $(-3)^4$
 - (e) $(-2)^5$
 - (f) 5^{-2}
- 2. Write these as single powers:
 - (a) $3^4 \times 3^6$
 - (b) $5^9 \div 5^3$
 - $(c) (7^3)^2$
 - (d) $2^{-3} \times 2^{8}$
 - (e) $\frac{4^7}{4^{-3}}$
 - $(f) (3^2)^{-4}$
- 3. Evaluate these fractional indices:
 - (a) $25^{\frac{1}{2}}$
 - (b) $8^{\frac{1}{3}}$
 - (c) $81^{\frac{3}{4}}$
 - (d) $243\frac{2}{5}$
 - (e) $64^{\frac{2}{3}}$
 - (f) $27^{-\frac{2}{3}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{36}$
 - (b) $\sqrt[3]{125}$

- (c) $\sqrt[4]{16}$
- (d) $\sqrt{0.36}$
- (e) $\sqrt[3]{-27}$
- (f) $\sqrt[5]{243}$
- 5. Express in index form:
 - (a) $\sqrt{11}$
 - (b) $\sqrt[3]{7}$
 - (c) $\frac{1}{\sqrt{3}}$
 - (d) $\sqrt[4]{y^5}$
 - (e) $\frac{1}{\sqrt[3]{b^4}}$
 - (f) $\sqrt{y} \times \sqrt[3]{y}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $3^2 \times 3^{-4} \times 3^5$
 - (b) $\frac{2^7 \times 2^{-3}}{2^{-2}}$
 - (c) $(5^3)^{-2} \times 5^8$
 - (d) $\frac{7^{-2} \times 7^6}{7^3}$
- 7. Evaluate these expressions:
 - (a) $27^{\frac{2}{3}}$
 - (b) $4^{-\frac{3}{2}}$
 - (c) $32^{\frac{3}{5}}$
 - (d) $49^{-\frac{3}{2}}$
 - (e) $125^{\frac{1}{3}}$
 - (f) $16^{-\frac{3}{4}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{3}{4}} \times x^{\frac{1}{3}}$
 - (b) $\frac{z^{\frac{5}{2}}}{z^{\frac{1}{4}}}$
 - (c) $(b^{\frac{1}{3}})^6$
 - (d) $\sqrt{y} \times y^{\frac{1}{4}}$
 - (e) $\frac{\sqrt[3]{n^4}}{\sqrt{n}}$
 - (f) $(q^{-\frac{1}{3}})^{-6}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{3} \times 3^2$
 - (b) $\frac{7^3}{\sqrt[3]{7}}$
 - (c) $\sqrt[4]{2^5} \times 2^{-\frac{1}{3}}$
 - (d) $\frac{\sqrt{11}}{\sqrt[3]{11^4}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{32}$
 - (b) $\sqrt{75}$
 - (c) $\sqrt{48}$
 - (d) $\sqrt{128}$
 - (e) $\sqrt{180}$
 - (f) $\sqrt{450}$
- 11. Simplify these expressions:
 - (a) $4\sqrt{5} + 7\sqrt{5}$
 - (b) $9\sqrt{2} 3\sqrt{2}$
 - (c) $\sqrt{12} + \sqrt{27}$
 - (d) $\sqrt{75} \sqrt{48}$
 - (e) $3\sqrt{18} + 2\sqrt{50}$
 - (f) $\sqrt{98} \sqrt{72} + \sqrt{8}$
- 12. Multiply and simplify:
 - (a) $\sqrt{5} \times \sqrt{20}$
 - (b) $\sqrt{12} \times \sqrt{27}$
 - (c) $3\sqrt{7} \times 2\sqrt{14}$
 - (d) $\sqrt{8} \times \sqrt{32}$
 - (e) $\sqrt{3} \times \sqrt{12} \times \sqrt{48}$
 - (f) $4\sqrt{6} \times 3\sqrt{24}$
- 13. Expand and simplify:
 - (a) $(3+\sqrt{2})(4-\sqrt{2})$
 - (b) $(2+\sqrt{7})(1+3\sqrt{7})$
 - (c) $(5 \sqrt{3})^2$
 - (d) $(\sqrt{11} + \sqrt{5})(\sqrt{11} \sqrt{5})$
 - (e) $(3\sqrt{2}+1)(3\sqrt{2}-1)$
 - (f) $(\sqrt{7}+3)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{7}}$
 - (b) $\frac{5}{\sqrt{11}}$
 - (c) $\frac{\sqrt{3}}{\sqrt{12}}$
 - (d) $\frac{6}{3\sqrt{2}}$
 - (e) $\frac{1}{2+\sqrt{3}}$
 - $(f) \ \frac{3}{1-\sqrt{7}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{4}{3+\sqrt{5}}$
 - (b) $\frac{7}{2-\sqrt{13}}$
 - (c) $\frac{\sqrt{2}}{1+\sqrt{2}}$
 - (d) $\frac{3\sqrt{7}}{2+\sqrt{7}}$
 - (e) $\frac{1}{\sqrt{8}-\sqrt{3}}$
 - (f) $\frac{\sqrt{5}+2}{\sqrt{5}-3}$
- 16. Simplify these expressions completely:
 - (a) $\frac{\sqrt{18} + \sqrt{32}}{\sqrt{2}}$
 - (b) $\frac{\sqrt{45} \sqrt{20}}{\sqrt{5}}$
 - (c) $\sqrt{(4+\sqrt{7})(4-\sqrt{7})}$
 - (d) $\sqrt{72} 3\sqrt{8} + \sqrt{32}$
 - (e) $(\sqrt{3} + \sqrt{12})^2$
 - (f) $\frac{\sqrt{63}}{\sqrt{7}} + \frac{\sqrt{28}}{\sqrt{7}}$
- 17. Prove that:
 - (a) $(\sqrt{p} + \sqrt{q})(\sqrt{p} \sqrt{q}) = p q$
 - (b) $\frac{1}{\sqrt{m}+\sqrt{n}} = \frac{\sqrt{m}-\sqrt{n}}{m-n}$
 - (c) $(p+q\sqrt{r})^2 = p^2 + 2pq\sqrt{r} + q^2r$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 456000
 - (b) 0.000071
 - (c) 2340000000
 - (d) 0.0000000087
 - (e) 789.3
 - (f) 0.00621
- 19. Write these in ordinary form:
 - (a) 5.8×10^5
 - (b) 3.47×10^{-5}
 - (c) 6.543×10^{-8}
 - (d) 2.14×10^{11}
 - (e) 7.9×10^{-3}
 - (f) 4.56×10^6
- 20. Calculate, giving answers in standard form:

- (a) $(4 \times 10^5) \times (3 \times 10^7)$
- (b) $(7 \times 10^{-2}) \times (6 \times 10^{8})$
- (c) $(8 \times 10^6) \div (4 \times 10^{-2})$
- (d) $(6 \times 10^{-5}) \div (2 \times 10^{-8})$
- (e) $(5 \times 10^4)^2$
- (f) $\sqrt{16 \times 10^{10}}$
- 21. Calculate these more complex expressions:
 - (a) $(3.2 \times 10^4) \times (2.5 \times 10^{-6})$
 - (b) $\frac{8.4 \times 10^7}{2.1 \times 10^{-3}}$
 - (c) $(4.7 \times 10^{-3}) + (5.6 \times 10^{-4})$
 - (d) $(6.8 \times 10^6) (3.4 \times 10^5)$
 - (e) $\frac{(3.6 \times 10^2) \times (2.5 \times 10^{-3})}{2.5 \times 10^{-3}}$
 - (f) $(2.25 \times 10^8)^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):
 - (a) $\frac{3}{4} + \frac{7}{12}$
 - (b) $\frac{5}{8} \frac{3}{10}$

 - (c) $\frac{8}{7} \times \frac{10}{49}$ (d) $\frac{8}{15} \div \frac{12}{25}$ (e) $\frac{5}{6} \frac{2}{9} + \frac{7}{18}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{7}$
 - (b) $0.\overline{54}$
 - (c) $0.2\overline{8}$
 - (d) $0.\overline{285714}$
 - (e) $1.7\overline{3}$
 - (f) $0.41\overline{6}$
- 24. Work out these percentage calculations:
 - (a) Increase 320 by 25%
 - (b) Decrease 450 by 12%
 - (c) Find 17.5% of 640
 - (d) What percentage is 84 out of 140?
 - (e) If 45% of a number is 117, find the number
 - (f) A price increases from £60 to £72. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 30% increase, a price is £169. Find the original price
 - (b) After a 25% decrease, a quantity is 84. Find the original quantity
 - (c) The value of a car decreases by 20% each year. If it's worth £15360 now, what was it worth 2 years ago?
 - (d) An investment grows by 6% per year. After 2 years it's worth £2247.36. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $3^{-2} + 2^0 4^{-1}$
 - (b) $\sqrt{25} \times 27^{\frac{1}{3}} 3^{-2}$
 - (c) $\frac{64^{\frac{2}{3}}-81^{\frac{3}{4}}}{4^{\frac{1}{2}}}$
 - (d) $9^{-\frac{1}{2}} + 36^{\frac{1}{2}} \times 2^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{4}{\sqrt{3}} + \frac{3}{\sqrt{12}}$
 - (b) $\sqrt{18} \times \sqrt{32} \sqrt{72}$
 - (c) $\frac{\sqrt{75}+\sqrt{48}}{\sqrt{3}}$
 - (d) $(3\sqrt{2}-2)^2$
- 28. Work with standard form in context:
 - (a) The mass of a proton is 1.67×10^{-27} kg. Find the mass of 6.02×10^{23} protons
 - (b) Sound travels at 3.3×10^2 m/s. How far does it travel in one hour (use 1 hour = 3.6×10^3 seconds)?
 - (c) The diameter of a molecule is approximately 2×10^{-9} m. How many molecules would fit across a distance of 1 mm?
 - (d) A supercomputer processes 3.6×10^{10} operations per second. How many operations in 8 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{3}$ is irrational. (Use proof by contradiction: assume $\sqrt{3} = \frac{a}{b}$ where a and b are integers with no common factors)
- 30. The number ψ satisfies $\psi^2 = \psi 1$.
 - (a) Show that $\psi = \frac{1-\sqrt{5}}{2}$
 - (b) Calculate ψ to 4 decimal places
 - (c) Find $\frac{1}{\psi}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{3}+\sqrt{5}+\sqrt{7}}$. (Hint: First rationalize using $(\sqrt{3}+\sqrt{5})-\sqrt{7}$)
- 32. A rectangle has sides of length $(3+\sqrt{2})$ cm and $(3-\sqrt{2})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of algae triples every 4 hours. If there are initially 8×10^3 algae:
 - (a) How many algae after 16 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 5×10^6 algae?
- 34. Show that $\frac{1}{\sqrt{p}+\sqrt{q}} + \frac{1}{\sqrt{p}-\sqrt{q}} = \frac{2\sqrt{p}}{p-q}$

- 35. A cone has volume $V = \frac{1}{3}\pi r^2 h$. If the volume is $384\pi~{\rm cm}^3$ and $h = 12~{\rm cm}$:
 - (a) Find the radius in surd form
 - (b) Find the slant height (use $l^2 = r^2 + h^2$)
 - (c) Express both answers exactly
- 36. The equation $x^2 6x + 1 = 0$ has solutions $x = 3 \pm 2\sqrt{2}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{3+2\sqrt{2}} + \frac{1}{3-2\sqrt{2}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$