A Level Pure Mathematics Practice Test 1: Sequences and Series

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Arithmetic Sequences

- 1. For the arithmetic sequence $5, 8, 11, 14, 17, \ldots$:
 - (a) Find the first term a and common difference d
 - (b) Find the general term u_n
 - (c) Calculate u_{20}
 - (d) Find which term equals 71
 - (e) Determine if 100 is a term in the sequence
- 2. An arithmetic sequence has $u_3 = 17$ and $u_8 = 37$.
 - (a) Find the first term and common difference
 - (b) Write the general term u_n
 - (c) Calculate u_{15}
 - (d) Find the first negative term
 - (e) Determine the largest value of n for which $u_n < 100$
- 3. The *n*th term of an arithmetic sequence is $u_n = 3n 2$.
 - (a) Write down the first five terms
 - (b) Find the common difference
 - (c) Calculate u_{50}
 - (d) Find the sum of the first 20 terms
 - (e) For what value of n is $u_n = 97$?
- 4. Three numbers x d, x, and x + d are in arithmetic progression with sum 21 and product 231.
 - (a) Find the value of x
 - (b) Set up an equation for d
 - (c) Solve to find the values of d
 - (d) Write down the three numbers for each case
- 5. An arithmetic sequence has first term a and common difference d.
 - (a) Prove that $u_n = a + (n-1)d$
 - (b) If $u_p = q$ and $u_q = p$ where $p \neq q$, find u_{p+q}
 - (c) Show that $u_1 + u_2 + \ldots + u_n = \frac{n}{2}[2a + (n-1)d]$
 - (d) Prove that $u_1 + u_n = u_2 + u_{n-1} = u_3 + u_{n-2} = \dots$

Section B: Arithmetic Series

- 6. Calculate the sum of these arithmetic series:
 - (a) 2+5+8+11+... (first 15 terms)
 - (b) $20 + 17 + 14 + 11 + \dots$ (first 12 terms)
 - (c) $\frac{1}{2} + 1 + \frac{3}{2} + 2 + \dots$ (first 25 terms)
 - (d) The series with first term 7, last term 84, and 12 terms
- 7. An arithmetic series has first term 8 and common difference 3.
 - (a) Find the sum of the first 20 terms
 - (b) Find the smallest value of n for which $S_n > 1000$
 - (c) If the sum of the first n terms is 440, find n
 - (d) Express S_n in terms of n
- 8. The sum of the first n terms of an arithmetic series is $S_n = 2n^2 + 3n$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common difference
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 9. Find the sum of:
 - (a) All multiples of 7 between 50 and 500
 - (b) All even integers from 2 to 100
 - (c) All odd integers from 1 to 199
 - (d) The integers from 1 to 100 that are divisible by 3 or 5
- 10. An arithmetic series has $S_{10} = 185$ and $S_{20} = 710$.
 - (a) Find the first term and common difference
 - (b) Calculate S_{30}
 - (c) Find the 15th term
 - (d) Determine when the sum first exceeds 2000

Section C: Geometric Sequences

- 11. For the geometric sequence $3, 6, 12, 24, 48, \ldots$:
 - (a) Find the first term a and common ratio r
 - (b) Find the general term u_n
 - (c) Calculate u_{10}
 - (d) Find which term equals 768
 - (e) Determine if 1500 is a term in the sequence
- 12. A geometric sequence has $u_2 = 6$ and $u_5 = 162$.
 - (a) Find the common ratio r
 - (b) Find the first term a

- (c) Write the general term u_n
- (d) Calculate u_8
- (e) Find the first term to exceed 10000
- 13. The *n*th term of a geometric sequence is $u_n = 5 \times 2^{n-1}$.
 - (a) Write down the first five terms
 - (b) Find the common ratio
 - (c) Calculate u_{12}
 - (d) Find the sum of the first 8 terms
 - (e) For what value of n is $u_n = 1280$?
- 14. Three numbers $\frac{x}{r}$, x, and xr are in geometric progression with sum 26 and product 216.
 - (a) Find the value of x
 - (b) Set up an equation for r
 - (c) Solve to find the values of r
 - (d) Write down the three numbers for each case
- 15. A geometric sequence has first term a and common ratio r.
 - (a) Prove that $u_n = ar^{n-1}$
 - (b) If $u_p = x$ and $u_q = y$ where p < q, find u_{p+q} in terms of x and y
 - (c) Show that $u_1 \cdot u_n = u_2 \cdot u_{n-1} = u_3 \cdot u_{n-2} = \dots$
 - (d) Prove that if u_p , u_q , and u_s are in geometric progression, then p, q, and s are in arithmetic progression

Section D: Geometric Series

- 16. Calculate the sum of these geometric series:
 - (a) 2+6+18+54+... (first 8 terms)
 - (b) 1-3+9-27+... (first 10 terms)
 - (c) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ (first 12 terms)
 - (d) $100 + 90 + 81 + 72.9 + \dots$ (first 15 terms)
- 17. A geometric series has first term 5 and common ratio $\frac{2}{3}$.
 - (a) Find the sum of the first 10 terms
 - (b) Find the smallest value of n for which $S_n > 14$
 - (c) Calculate the sum to infinity
 - (d) Find how many terms are needed for the sum to be within 0.01 of the sum to infinity
- 18. The sum of the first n terms of a geometric series is $S_n = 3(2^n 1)$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common ratio
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 19. Evaluate these infinite geometric series:

- (a) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$
- (b) $3 \frac{3}{2} + \frac{3}{4} \frac{3}{8} + \dots$
- (c) $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81} + \dots$
- (d) $0.7 + 0.07 + 0.007 + 0.0007 + \dots$
- 20. A geometric series has $S_3 = 13$ and $S_6 = 364$.
 - (a) Set up equations for the first term and common ratio
 - (b) Solve to find a and r
 - (c) Calculate S_{10}
 - (d) Find the sum to infinity (if it exists)
 - (e) Determine the first term to exceed 1000

Section E: Sigma Notation

- 21. Evaluate these sums:
 - (a) $\sum_{r=1}^{10} (2r+3)$

 - (b) $\sum_{r=1}^{20} (3r-1)$ (c) $\sum_{r=1}^{15} r^2$ (d) $\sum_{r=1}^{12} (r^2 + 2r)$
- 22. Express these series using sigma notation:
 - (a) $5+8+11+14+\ldots+32$
 - (b) $2+6+18+54+\ldots+4374$
 - (c) $1^3 + 2^3 + 3^3 + \ldots + 10^3$
 - (d) $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \ldots + \frac{1}{90}$
- 23. Use the standard formulae to evaluate:
 - (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$: Find $\sum_{r=1}^{50} r$
 - (b) $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$: Find $\sum_{r=1}^{20} r^2$
 - (c) $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$: Find $\sum_{r=1}^{15} r^3$
 - (d) $\sum_{r=1}^{30} (2r^2 r + 3)$
- 24. Simplify these expressions:
 - (a) $\sum_{r=1}^{n} (ar+b)$ in terms of a, b, and n
 - (b) $\sum_{r=1}^{n} (r^2 2r + 1)$
 - (c) $\sum_{r=1}^{n} (3r+1)^2$
 - (d) $\sum_{r=1}^{n} r(r+1)$
- 25. Prove these results:
 - (a) $\sum_{r=1}^{n} (2r-1) = n^2$
 - (b) $\sum_{r=1}^{n} r(r+1) = \frac{n(n+1)(n+2)}{3}$
 - (c) $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$
 - (d) $\sum_{r=1}^{n} (r^3 (r-1)^3) = n^3$

Section F: Binomial Expansion - Integer Powers

- 26. Expand using the binomial theorem:
 - (a) $(x+2)^4$
 - (b) $(2x-1)^5$
 - (c) $(1-3x)^6$
 - (d) $(x + \frac{1}{x})^4$
- 27. Find the specified terms in these expansions:
 - (a) The coefficient of x^3 in $(2x+3)^7$
 - (b) The coefficient of x^5 in $(x-2)^8$
 - (c) The constant term in $(x^2 + \frac{2}{x})^9$
 - (d) The coefficient of x^{-2} in $(2x \frac{1}{x^2})^{10}$
- 28. Use the binomial theorem to evaluate:
 - (a) $(1.01)^5$ to 6 decimal places
 - (b) $(0.99)^6$ to 5 decimal places
 - (c) $(1.02)^4$ exactly
 - (d) 101^4 by writing it as $(100 + 1)^4$
- 29. In the expansion of $(1 + ax)^n$:
 - (a) The coefficient of x is 12 and the coefficient of x^2 is 60. Find a and n.
 - (b) Find the coefficient of x^3
 - (c) Write out the first four terms of the expansion
 - (d) For what values of x does the expansion converge?
- 30. The coefficient of x^r in the expansion of $(1+x)^n$ is $\binom{n}{r}$.
 - (a) Show that $\binom{n}{r} = \binom{n}{n-r}$
 - (b) Prove that $\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}$
 - (c) Use this to construct Pascal's triangle up to row $6\,$
 - (d) Find the sum $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n}$

Section G: Binomial Expansion - Non-Integer Powers

- 31. Expand these expressions up to and including the term in x^3 :
 - (a) $(1+x)^{1/2}$
 - (b) $(1-x)^{-1}$
 - (c) $(1+2x)^{-2}$
 - (d) $(1-3x)^{1/3}$
- 32. Find the first four terms in the expansion of:
 - (a) $(4+x)^{1/2}$
 - (b) $(9-x)^{-1/2}$
 - $(c) \frac{1}{(1+x)^2}$
 - (d) $\sqrt{1-4x}$

- 33. State the range of values of x for which these expansions are valid:
 - (a) $(1+3x)^{-1} = 1 3x + 9x^2 27x^3 + \dots$
 - (b) $(1-2x)^{1/2} = 1 x \frac{x^2}{2} \frac{x^3}{2} \dots$
 - (c) $(2+x)^{-1} = \frac{1}{2} \frac{x}{4} + \frac{x^2}{8} \frac{x^3}{16} + \dots$
 - (d) $\frac{1}{\sqrt{4-x}} = \frac{1}{2} + \frac{x}{16} + \frac{3x^2}{256} + \dots$
- 34. Use binomial expansions to find approximations:
 - (a) $\sqrt{1.01}$ to 5 decimal places
 - (b) $\frac{1}{\sqrt{0.98}}$ to 4 decimal places
 - (c) $(1.02)^{-2}$ to 6 decimal places
 - (d) $\sqrt[3]{1.03}$ to 5 decimal places
- 35. Find the coefficient of x^2 in the expansion of:
 - (a) $(1+x)^{1/2}(1-x)^{1/2}$
 - (b) $(1+2x)^{-1}(1+x)^2$
 - (c) $\frac{1+x}{\sqrt{1-x}}$
 - (d) $(1+x+x^2)(1-x)^{-2}$

Section H: Mixed Series and Advanced Topics

- 36. A sequence is defined by $u_1 = 2$ and $u_{n+1} = 3u_n + 1$ for $n \ge 1$.
 - (a) Find the first five terms
 - (b) Prove by induction that $u_n = \frac{5 \times 3^{n-1} 1}{2}$
 - (c) Calculate u_{10}
 - (d) Find the sum of the first 8 terms
- 37. The sequence $\{v_n\}$ satisfies $v_n = 2v_{n-1} + 3v_{n-2}$ with $v_1 = 1$ and $v_2 = 5$.
 - (a) Find the first six terms
 - (b) Show that the characteristic equation is $r^2 2r 3 = 0$
 - (c) Solve to find r = 3 and r = -1
 - (d) Use the general solution $v_n = A \cdot 3^n + B \cdot (-1)^n$ to find A and B
 - (e) Write the explicit formula for v_n
- 38. Consider the series $\sum_{r=1}^{\infty} \frac{1}{r(r+1)}$.
 - (a) Use partial fractions to show that $\frac{1}{r(r+1)} = \frac{1}{r} \frac{1}{r+1}$
 - (b) Write out the first few terms and observe the telescoping pattern
 - (c) Find the sum of the first n terms
 - (d) Determine the sum to infinity
- 39. The Fibonacci sequence is defined by $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.
 - (a) Write down the first 10 terms
 - (b) Calculate the ratios $\frac{F_{n+1}}{F_n}$ for $n=1,2,3,\ldots,9$
 - (c) Show that these ratios approach the golden ratio $\phi = \frac{1+\sqrt{5}}{2}$

- (d) Prove that $F_n = \frac{\phi^n (-\phi)^{-n}}{\sqrt{5}}$ (Binet's formula)
- 40. A ball is dropped from a height of 10 meters. After each bounce, it reaches $\frac{3}{4}$ of its previous height.
 - (a) Find the height after the 5th bounce
 - (b) Calculate the total distance traveled when the ball comes to rest
 - (c) Find the time taken for the ball to come to rest (use $t = \sqrt{\frac{2h}{g}}$ with $g = 10 \text{ m/s}^2$)
 - (d) Model the heights as a geometric sequence and find its sum

Section I: Applications and Problem Solving

- 41. A loan of £10,000 is taken out at 8% annual compound interest. Monthly payments of £150 are made.
 - (a) Set up a recurrence relation for the amount owed after n months
 - (b) Find the amount owed after 12 months
 - (c) Determine how many months it takes to pay off the loan
 - (d) Calculate the total amount paid
- 42. A bacteria culture doubles every 3 hours. Initially, there are 500 bacteria.
 - (a) Model the population as a geometric sequence
 - (b) Find the population after 24 hours
 - (c) After how many hours will the population exceed 1 million?
 - (d) If the growth rate changes to tripling every 4 hours after 12 hours, find the population after 20 hours
- 43. An infinite checkerboard pattern uses squares with side lengths forming a geometric sequence: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ cm.
 - (a) Find the total area of all the squares
 - (b) Find the total perimeter of all the squares
 - (c) If each square costs £2 per cm² to make, find the total cost
 - (d) What fraction of the total area is occupied by the first 5 squares?
- 44. A pharmaceutical company models drug concentration in the bloodstream. Initially, 100 mg is present. Every hour, 20% is eliminated, and 10 mg is added.
 - (a) Set up a recurrence relation for the concentration after n hours
 - (b) Find the concentration after 5 hours
 - (c) Determine the long-term equilibrium concentration
 - (d) After how many hours is the concentration within 1% of the equilibrium?
- 45. An investment strategy involves investing £1000 in the first year, £1100 in the second year, £1210 in the third year, and so on (increasing by 10% each year).
 - (a) Model the annual investments as a geometric sequence
 - (b) Find the total amount invested over 20 years
 - (c) If each investment earns 5% annual compound interest from the time it's made, find the total value after 20 years
 - (d) Compare this with investing £1000 annually at 5% compound interest

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$