A Level Pure Mathematics Practice Test 2: Algebra and Functions

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 2 hours

Section A: Algebraic Manipulation

1. Simplify these expressions:

(a)
$$\frac{x^2-16}{x^2-8x+16}$$

(b) $\frac{3x^2-12}{x^2-3x-10}$
(c) $\frac{x^3+27}{x^2-9}$

(b)
$$\frac{3x^2-12}{x^2-3x-10}$$

(c)
$$\frac{x^3+27}{x^2-9}$$

(d)
$$\frac{x^4-81}{x^2-3x-18}$$

2. Factorize completely:

(a)
$$x^3 - 8x^2 + 12x + 20$$

(b)
$$27x^3 + 8$$

(c)
$$x^4 - 81$$

(d)
$$x^6 - 1$$

(e)
$$x^4 - 6x^2 + 9$$

(f)
$$x^3 + 2x^2 - 9x - 18$$

3. Express as single fractions in simplest form:

(a)
$$\frac{3}{x+1} - \frac{2}{x-3}$$

(b)
$$\frac{2x}{x^2-9} + \frac{1}{x-3}$$

(c)
$$\frac{x-2}{x^2+2x-3} - \frac{x+1}{x^2-4}$$

(d)
$$\frac{2}{x} - \frac{3}{x+2} + \frac{5}{x^2+2x}$$

4. Use the binomial theorem to expand:

(a)
$$(3x-2)^4$$

(b)
$$(x + \frac{2}{x})^6$$

(c)
$$(2-x)^5$$
, and find the coefficient of x^3

(d) Find the coefficient of
$$x^6$$
 in the expansion of $(x^3 - \frac{1}{x^2})^8$

5. Simplify using laws of indices:

(a)
$$\frac{3^{2x} \cdot 9^{x+1}}{27^{x-1}}$$

- (b) $\frac{16^{x-2} \cdot 8^{2x+1}}{4^{3x-1}}$
- (c) $(x^{\frac{3}{4}})^{\frac{2}{3}} \cdot x^{-\frac{1}{6}}$
- (d) $\frac{(3x)^2 \cdot (2x^3)^3}{18x^7}$

Section B: Linear and Quadratic Equations

- 6. Solve these equations:
 - (a) $\frac{3x+2}{4} \frac{2x-1}{3} = \frac{5}{6}$
 - (b) $\frac{2x}{x+1} = \frac{4}{x-3}$
 - (c) $\sqrt{3x-2} = x-2$
 - (d) $\frac{2}{x+2} \frac{1}{x-1} = \frac{1}{3}$
- 7. Solve these quadratic equations, leaving answers in exact form where appropriate:
 - (a) $3x^2 8x + 2 = 0$
 - (b) $x^2 6x + 2 = 0$
 - (c) $2x^2 = 3x + 5$
 - (d) $(3x+1)^2 = 2(x-1)$
- 8. For the quadratic equation $2x^2 + (k-1)x + k = 0$:
 - (a) Find the discriminant in terms of k
 - (b) Find the values of k for which the equation has equal roots
 - (c) Find the values of k for which the equation has no real roots
 - (d) When k = 3, find the sum and product of the roots
- 9. The quadratic $px^2 + qx + r = 0$ has roots α and β .
 - (a) Express $\alpha + \beta$ and $\alpha\beta$ in terms of p, q, and r
 - (b) Find a quadratic equation with roots 3α and 3β
 - (c) Find a quadratic equation with roots $\alpha 2$ and $\beta 2$
 - (d) If $\alpha^2 + \beta^2 = 14$ and $\alpha + \beta = 6$, find $\alpha\beta$

Section C: Cubic and Higher Order Equations

- 10. Solve these cubic equations:
 - (a) $x^3 4x^2 + 5x 2 = 0$
 - (b) $x^3 3x^2 6x + 8 = 0$
 - (c) $3x^3 + 2x^2 19x 6 = 0$
 - (d) $x^3 + 3x^2 4 = 0$
- 11. Given that x = -1 is a root of $x^3 + ax^2 + bx + 6 = 0$:
 - (a) Find a relationship between a and b
 - (b) If the sum of all three roots is 2, find a and b
 - (c) Hence find all three roots
 - (d) Verify your answer by substitution
- 12. Solve these quartic equations:

(a)
$$x^4 - 10x^2 + 9 = 0$$

(b)
$$x^4 - 8x^2 + 15 = 0$$

(c)
$$(x^2 - 2x)^2 - 5(x^2 - 2x) + 6 = 0$$

(d)
$$x^4 - 2x^3 - 13x^2 + 14x + 24 = 0$$
 (given that $x = -2$ is a root)

13. Use the substitution $u = x - \frac{2}{x}$ to solve:

(a)
$$x^2 + \frac{4}{x^2} = 6$$

(b)
$$3x^2 - 4x + \frac{4}{x} - \frac{3}{x^2} = 0$$

Section D: Functions - Definition and Notation

14. For the function $f(x) = \frac{3x-2}{x+1}$ where $x \neq -1$:

(a) Find
$$f(0)$$
, $f(2)$, and $f(-3)$

- (b) Solve f(x) = 2
- (c) Find the value of x for which f(x) is undefined
- (d) Find the range of f(x)

15. Given $g(x) = x^2 + 6x + 5$:

- (a) Express g(x) in the form $(x+a)^2 + b$
- (b) State the minimum value of g(x) and the value of x at which it occurs
- (c) Solve g(x) = 0
- (d) Find the range of g(x)

16. For $h(x) = \sqrt{16 - x^2}$:

- (a) Find the domain of h(x)
- (b) Find the range of h(x)
- (c) Sketch the graph of y = h(x)
- (d) Solve h(x) = 3

17. Define
$$k(x) = \begin{cases} x^2 + 1 & \text{if } x \le 0\\ 3x & \text{if } 0 < x \le 2\\ 7 & \text{if } x > 2 \end{cases}$$

- (a) Find k(-1), k(0), k(1), and k(3)
- (b) Is k(x) continuous at x = 0? Justify your answer
- (c) Is k(x) continuous at x = 2? Justify your answer
- (d) Sketch the graph of y = k(x)

Section E: Composite and Inverse Functions

18. Given f(x) = 3x - 1 and $g(x) = x^2 + 2$:

- (a) Find f(g(x)) and g(f(x))
- (b) Calculate f(g(1)) and g(f(1))
- (c) Solve f(g(x)) = 14
- (d) Find $(f \circ g)^{-1}(x)$

- 19. For $p(x) = \frac{2x-1}{x+3}$ where $x \neq -3$:
 - (a) Find $p^{-1}(x)$
 - (b) Verify that $p(p^{-1}(x)) = x$
 - (c) State the domain and range of $p^{-1}(x)$
 - (d) Solve $p(x) = p^{-1}(x)$
- 20. Given f(x) = 2x + 5 and $g(x) = \frac{1}{x-2}$ where $x \neq 2$:
 - (a) Find $(f \circ g)(x)$ and state its domain
 - (b) Find $(g \circ f)(x)$ and state its domain
 - (c) Find $(f \circ g)^{-1}(x)$
 - (d) Verify your answer by showing $(f \circ g)((f \circ g)^{-1}(x)) = x$
- 21. The function $h(x) = x^2 6x + 2$ is defined for $x \ge 3$.
 - (a) Explain why the domain restriction is necessary for h^{-1} to exist
 - (b) Find $h^{-1}(x)$
 - (c) State the domain and range of $h^{-1}(x)$
 - (d) Sketch h(x) and $h^{-1}(x)$ on the same axes

Section F: Graphing Functions

- 22. Sketch the graphs of these functions, clearly showing key features:
 - (a) $y = x^3 + 3x^2 4$
 - (b) $y = \frac{3x-1}{x+2}$
 - (c) $y = |x^2 6x + 8|$
 - (d) $y = \frac{x^2+4}{x^2-1}$
- 23. For the rational function $f(x) = \frac{x^2 3x + 2}{x^2 1}$:
 - (a) Find the domain of f(x)
 - (b) Find the x and y intercepts
 - (c) Identify any vertical asymptotes
 - (d) Find the horizontal asymptote
 - (e) Sketch the graph of y = f(x)
- 24. Analyze the function $g(x) = \frac{3x^2 12}{x^2 2x 8}$:
 - (a) Factorize the numerator and denominator
 - (b) Simplify g(x) and state its domain
 - (c) Find any asymptotes
 - (d) Find the coordinates of any stationary points
 - (e) Sketch the graph of y = g(x)
- 25. For the polynomial $p(x) = x^4 2x^3 8x^2$:
 - (a) Factorize p(x) completely
 - (b) Find the roots and their multiplicities
 - (c) Determine the behavior at each root
 - (d) Find p'(x) and locate stationary points
 - (e) Sketch the graph of y = p(x)

Section G: Function Transformations

- 26. Given the function $f(x) = x^2$, describe the transformations and sketch:
 - (a) y = f(x+3) 2
 - (b) y = -3f(x-1)
 - (c) $y = f(\frac{x}{2}) + 1$
 - (d) y = 2f(-x) 4
- 27. The graph of y = f(x) has vertex at (-2,4) and passes through (0,8) and (-4,8). Find the vertex and two other points for:
 - (a) y = f(x) 3
 - (b) y = f(x+1)
 - (c) y = 2f(x)
 - (d) y = f(3x)
 - (e) y = -f(x)
 - (f) y = f(-x)
- 28. Given that g(x) = |x + 2| 1:
 - (a) Describe the transformations applied to y = |x|
 - (b) State the vertex of the graph
 - (c) Find the range of g(x)
 - (d) Solve g(x) = 3
 - (e) Sketch the graph of y = g(x)
- 29. The function $h(x) = \cos x$ is transformed to $k(x) = 2\cos(3x \frac{\pi}{4}) + 1$.
 - (a) Identify each transformation in the correct order
 - (b) State the amplitude of k(x)
 - (c) State the period of k(x)
 - (d) Find the phase shift
 - (e) Find the vertical shift
 - (f) Sketch one complete cycle of y = k(x)

Section H: Special Functions and Applications

- 30. For the exponential function $f(x) = 2^{x+2} 3$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Find the horizontal asymptote
 - (d) Solve f(x) = 5
 - (e) Find $f^{-1}(x)$ and state its domain and range
- 31. For the logarithmic function $g(x) = \log_3(x-1) + 2$:
 - (a) State the domain and range
 - (b) Find the x-intercept
 - (c) Find the vertical asymptote

- (d) Solve g(x) = 4
- (e) Express g(x) in terms of natural logarithms
- 32. A function is defined as $f(x) = \frac{px+q}{rx+s}$ where $ps qr \neq 0$.
 - (a) Find the domain of f(x)
 - (b) Find $f^{-1}(x)$
 - (c) Show that $(f^{-1} \circ f)(x) = x$
 - (d) Under what condition is $f(x) = f^{-1}(x)$?
- 33. The modulus function |x| can be written as: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
 - (a) Sketch y = |3x + 2|
 - (b) Solve |3x + 2| = 7
 - (c) Solve $|3x + 2| \le 5$
 - (d) Find the range of values for which |3x + 2| > 4

Section I: Problem Solving and Applications

- 34. A triangular field has one side along a straight road. The farmer has 80 meters of fencing to enclose the other two sides. Let x be the length of one of the equal sides.
 - (a) Express the base of the triangle in terms of x
 - (b) Show that the area $A = x\sqrt{1600 x^2}$
 - (c) Find the value of x that maximizes the area
 - (d) Calculate the maximum area
 - (e) State the domain of the function in this context
- 35. The revenue R (in thousands of pounds) from selling x thousand units is given by: $R(x) = -3x^2 + 24x 36$
 - (a) Express R(x) in completed square form
 - (b) Find the break-even points (where R(x) = 0)
 - (c) Determine the sales level for maximum revenue
 - (d) Calculate the maximum revenue
 - (e) For what range of sales levels is the revenue positive?
- 36. A ball is thrown upward and its height h (in meters) after t seconds is: $h(t) = -5t^2 + 20t + 1.5$ for $t \ge 0$
 - (a) Find when the ball reaches its maximum height
 - (b) Calculate the maximum height
 - (c) Determine when the ball hits the ground
 - (d) Find the ball's height after 3 seconds
- 37. A function $f(x) = \frac{x^2+1}{x^2-9}$ models a physical relationship.
 - (a) Find the domain and range of f(x)
 - (b) Determine the horizontal asymptote and explain its physical meaning
 - (c) Find any vertical asymptotes

- (d) Analyze the behavior as $x \to \pm \infty$
- (e) Sketch the graph and discuss any symmetry
- 38. Two functions are related by g(x) = f(3x+2) 1 where $f(x) = x^2$.
 - (a) Find an explicit expression for g(x)
 - (b) Describe the transformations that map f to g
 - (c) Find the vertex of the parabola y = g(x)
 - (d) If f has domain [-2,3], find the domain of g
 - (e) Solve g(x) = f(x) and interpret geometrically

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$