A Level Pure Mathematics Practice Test 4: Sequences and Series

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Arithmetic Sequences

- 1. For the arithmetic sequence $11, 18, 25, 32, 39, \ldots$:
 - (a) Find the first term a and common difference d
 - (b) Find the general term u_n
 - (c) Calculate u_{28}
 - (d) Find which term equals 158
 - (e) Determine if 300 is a term in the sequence
- 2. An arithmetic sequence has $u_6 = 38$ and $u_{12} = 68$.
 - (a) Find the first term and common difference
 - (b) Write the general term u_n
 - (c) Calculate u_{22}
 - (d) Find the first term to exceed 150
 - (e) Determine the largest value of n for which $u_n < 180$
- 3. The *n*th term of an arithmetic sequence is $u_n = 6n 5$.
 - (a) Write down the first five terms
 - (b) Find the common difference
 - (c) Calculate u_{45}
 - (d) Find the sum of the first 35 terms
 - (e) For what value of n is $u_n = 175$?
- 4. Three numbers q-4j, q, and q+4j are in arithmetic progression with sum 57 and product 5187.
 - (a) Find the value of q
 - (b) Set up an equation for j
 - (c) Solve to find the values of j
 - (d) Write down the three numbers for each case
- 5. An arithmetic sequence has first term a and common difference d.
 - (a) If the mth term is x times the nth term, prove that (mx n)a = (m nx)d
 - (b) Show that if $S_m = S_n$ where $m \neq n$, then $S_{m+n} = 0$
 - (c) Prove that the arithmetic mean of the first n terms equals $\frac{u_1+u_n}{2}$
 - (d) If consecutive terms u_p , u_q , u_r satisfy $u_p + u_r = 2u_q$, show that p + r = 2q

Section B: Arithmetic Series

- 6. Calculate the sum of these arithmetic series:
 - (a) $8 + 14 + 20 + 26 + \dots$ (first 20 terms)
 - (b) $35 + 31 + 27 + 23 + \dots$ (first 18 terms)
 - (c) $\frac{2}{5} + \frac{4}{5} + \frac{6}{5} + \frac{8}{5} + \dots$ (first 24 terms)
 - (d) The series with first term 18, last term 126, and 13 terms
- 7. An arithmetic series has first term 11 and common difference 7.
 - (a) Find the sum of the first 16 terms
 - (b) Find the smallest value of n for which $S_n \geq 2500$
 - (c) If the sum of the first n terms is 1680, find n
 - (d) Express S_n in terms of n
- 8. The sum of the first n terms of an arithmetic series is $S_n = 4n^2 2n$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common difference
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 9. Find the sum of:
 - (a) All multiples of 8 between 150 and 600
 - (b) All integers from 1 to 80 that are divisible by 6
 - (c) All odd integers from 11 to 199
 - (d) The integers from 1 to 200 that are divisible by 4 or 5
- 10. An arithmetic series has $S_{14} = 406$ and $S_{22} = 946$.
 - (a) Find the first term and common difference
 - (b) Calculate S_{30}
 - (c) Find the 18th term
 - (d) Determine when the sum first exceeds 2500

Section C: Geometric Sequences

- 11. For the geometric sequence 5, 20, 80, 320, 1280, ...:
 - (a) Find the first term a and common ratio r
 - (b) Find the general term u_n
 - (c) Calculate u_{11}
 - (d) Find which term equals 5120
 - (e) Determine if 20480 is a term in the sequence
- 12. A geometric sequence has $u_5 = 48$ and $u_8 = 384$.
 - (a) Find the common ratio r
 - (b) Find the first term a

- (c) Write the general term u_n
- (d) Calculate u_{13}
- (e) Find the first term to exceed 200000
- 13. The *n*th term of a geometric sequence is $u_n = 8 \times 2^{n-1}$.
 - (a) Write down the first five terms
 - (b) Find the common ratio
 - (c) Calculate u_{15}
 - (d) Find the sum of the first 9 terms
 - (e) For what value of n is $u_n = 2048$?
- 14. Three numbers $\frac{v}{u}$, v, and vu are in geometric progression with sum 124 and product 1728.
 - (a) Find the value of v
 - (b) Set up an equation for u
 - (c) Solve to find the values of u
 - (d) Write down the three numbers for each case
- 15. A geometric sequence has first term a and common ratio r.
 - (a) If the geometric mean of u_m and u_n is u_k , prove that 2k = m + n
 - (b) Show that the sequence $u_1^2, u_2^2, u_3^2, \ldots$ is also geometric with ratio r^2
 - (c) Prove that for any three consecutive terms, $u_{n-1} \cdot u_{n+1} = u_n^2$
 - (d) If S_n denotes the sum of the first n terms, show that $S_n = a \cdot \frac{r^n 1}{r 1}$ when $r \neq 1$

Section D: Geometric Series

- 16. Calculate the sum of these geometric series:
 - (a) $9 + 27 + 81 + 243 + \dots$ (first 10 terms)
 - (b) $3 12 + 48 192 + \dots$ (first 11 terms)
 - (c) $\frac{2}{5} + \frac{2}{15} + \frac{2}{45} + \frac{2}{135} + \dots$ (first 12 terms)
 - (d) $96 + 72 + 54 + 40.5 + \dots$ (first 14 terms)
- 17. A geometric series has first term 15 and common ratio $\frac{3}{5}$.
 - (a) Find the sum of the first 20 terms
 - (b) Find the smallest value of n for which $S_n \geq 37$
 - (c) Calculate the sum to infinity
 - (d) Find how many terms are needed for the sum to be within 0.01 of the sum to infinity
- 18. The sum of the first n terms of a geometric series is $S_n = 6(5^n 1)$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common ratio
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 19. Evaluate these infinite geometric series:

- (a) $1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \dots$
- (b) $8-4+2-1+\dots$
- (c) $\frac{7}{8} + \frac{7}{32} + \frac{7}{128} + \frac{7}{512} + \dots$
- (d) $0.3 + 0.03 + 0.003 + 0.0003 + \dots$
- 20. A geometric series has $S_6 = 126$ and $S_{12} = 4662$.
 - (a) Set up equations for the first term and common ratio
 - (b) Solve to find a and r
 - (c) Calculate S_{18}
 - (d) Find the sum to infinity (if it exists)
 - (e) Determine the first term to exceed 10000

Section E: Sigma Notation

- 21. Evaluate these sums:
 - (a) $\sum_{r=1}^{18} (5r+3)$
 - (b) $\sum_{r=1}^{35} (6r 5)$ (c) $\sum_{r=1}^{28} r^2$

 - (d) $\sum_{r=1}^{16} (4r^2 + 3r)$
- 22. Express these series using sigma notation:
 - (a) $10 + 16 + 22 + 28 + \ldots + 58$
 - (b) $6 + 30 + 150 + 750 + \ldots + 18750$
 - (c) $2^3 + 4^3 + 6^3 + 8^3 + \ldots + 20^3$
 - (d) $\frac{1}{5} + \frac{1}{14} + \frac{1}{27} + \frac{1}{44} + \ldots + \frac{1}{104}$
- 23. Use the standard formulae to evaluate:
 - (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$: Find $\sum_{r=1}^{85} r$
 - (b) $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$: Find $\sum_{r=1}^{35} r^2$
 - (c) $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$: Find $\sum_{r=1}^{20} r^3$
 - (d) $\sum_{r=1}^{45} (5r^2 4r + 3)$
- 24. Simplify these expressions:
 - (a) $\sum_{r=1}^{n} (mr + s)$ in terms of m, s, and n
 - (b) $\sum_{r=1}^{n} (4r^2 2r + 3)$
 - (c) $\sum_{r=1}^{n} (3r+1)^2$
 - (d) $\sum_{r=1}^{n} r(4r+1)$
- 25. Prove these results:
 - (a) $\sum_{r=1}^{n} (5r-4) = \frac{n(5n-3)}{2}$
 - (b) $\sum_{r=1}^{n} r(r+4) = \frac{n(n+1)(n+11)}{3}$
 - (c) $\sum_{r=1}^{n} \frac{1}{(4r-3)(4r+1)} = \frac{n}{4n+1}$
 - (d) $\sum_{r=1}^{n} ((r+2)^2 (r+1)^2) = n(n+5)$

Section F: Binomial Expansion - Integer Powers

- 26. Expand using the binomial theorem:
 - (a) $(x+5)^5$
 - (b) $(5x-4)^4$
 - (c) $(4-3x)^6$
 - (d) $(4x + \frac{3}{x})^5$
- 27. Find the specified terms in these expansions:
 - (a) The coefficient of x^6 in $(5x+3)^{10}$
 - (b) The coefficient of x^8 in $(3x-2)^{11}$
 - (c) The constant term in $(x^5 + \frac{4}{x^3})^6$
 - (d) The coefficient of x^{-2} in $(5x^3 \frac{2}{x})^7$
- 28. Use the binomial theorem to evaluate:
 - (a) $(1.05)^6$ to 6 decimal places
 - (b) $(0.94)^5$ to 5 decimal places
 - (c) $(1.02)^8$ exactly
 - (d) 103^4 by writing it as $(100 + 3)^4$
- 29. In the expansion of $(1 + dx)^q$:
 - (a) The coefficient of x is 21 and the coefficient of x^2 is 189. Find d and q.
 - (b) Find the coefficient of x^3
 - (c) Write out the first four terms of the expansion
 - (d) For what values of x does the expansion converge?
- 30. The coefficient of x^i in the expansion of $(1+x)^q$ is $\binom{q}{i}$.
 - (a) Show that $\sum_{i=0}^{q} {q \choose i} \cdot 3^i = 4^q$
 - (b) Prove that $\binom{q}{i} \cdot \binom{i}{j} = \binom{q}{j} \cdot \binom{q-j}{i-j}$ for appropriate values
 - (c) Use Pascal's triangle properties to find $\binom{12}{5}$ from known values
 - (d) Show that $\sum_{i=0}^{q} (-1)^{i} {q \choose i} \cdot i^{2} = 0$ for $q \geq 2$

Section G: Binomial Expansion - Non-Integer Powers

- 31. Expand these expressions up to and including the term in x^3 :
 - (a) $(1+x)^{3/4}$
 - (b) $(1-x)^{-4}$
 - (c) $(1+6x)^{1/2}$
 - (d) $(1-7x)^{-1/3}$
- 32. Find the first four terms in the expansion of:
 - (a) $(36+x)^{1/2}$
 - (b) $(25-x)^{-1/2}$
 - $(c) \frac{1}{(4+x)^4}$
 - (d) $\sqrt{16-5x}$

- 33. State the range of values of x for which these expansions are valid:
 - (a) $(1+6x)^{-1} = 1 6x + 36x^2 216x^3 + \dots$
 - (b) $(1-5x)^{1/2} = 1 \frac{5x}{2} \frac{25x^2}{8} \frac{125x^3}{16} \dots$
 - (c) $(7+x)^{-1} = \frac{1}{7} \frac{x}{49} + \frac{x^2}{343} \frac{x^3}{2401} + \dots$
 - (d) $\frac{1}{\sqrt{25-x}} = \frac{1}{5} + \frac{x}{250} + \frac{3x^2}{12500} + \dots$
- 34. Use binomial expansions to find approximations:
 - (a) $\sqrt{1.08}$ to 5 decimal places
 - (b) $\frac{1}{\sqrt{0.88}}$ to 4 decimal places
 - (c) $(1.05)^{-5}$ to 6 decimal places
 - (d) $\sqrt[3]{1.12}$ to 5 decimal places
- 35. Find the coefficient of x^2 in the expansion of:
 - (a) $(1+x)^{3/4}(1-x)^{1/4}$
 - (b) $(1+5x)^{-1}(1+3x)^2$
 - (c) $\frac{1+3x}{\sqrt{1-x}}$
 - (d) $(1+2x-x^2)(1+x)^{-4}$

Section H: Mixed Series and Advanced Topics

- 36. A sequence is defined by $u_1 = 5$ and $u_{n+1} = 4u_n 11$ for $n \ge 1$.
 - (a) Find the first five terms
 - (b) Prove by induction that $u_n = \frac{9 \times 4^{n-1} + 11}{3}$
 - (c) Calculate u_{18}
 - (d) Find the sum of the first 15 terms
- 37. The sequence $\{y_n\}$ satisfies $y_n = 5y_{n-1} 6y_{n-2}$ with $y_1 = 3$ and $y_2 = 9$.
 - (a) Find the first six terms
 - (b) Show that the characteristic equation is $r^2 5r + 6 = 0$
 - (c) Solve to find r = 3 and r = 2
 - (d) Use the general solution $y_n = A \cdot 3^n + B \cdot 2^n$ to find A and B
 - (e) Write the explicit formula for y_n
- 38. Consider the series $\sum_{r=1}^{\infty} \frac{2}{r(r+4)}$.
 - (a) Use partial fractions to show that $\frac{2}{r(r+4)} = \frac{1}{2} \left(\frac{1}{r} \frac{1}{r+4} \right)$
 - (b) Write out the first few terms and observe the telescoping pattern
 - (c) Find the sum of the first n terms
 - (d) Determine the sum to infinity
- 39. The Padovan sequence is defined by $P_1 = 1$, $P_2 = 1$, $P_3 = 1$, and $P_n = P_{n-2} + P_{n-3}$ for $n \ge 4$.
 - (a) Write down the first 15 terms
 - (b) Calculate the ratios $\frac{P_{n+1}}{P_n}$ for $n=1,2,3,\ldots,14$
 - (c) Show that these ratios approach the plastic number $\rho \approx 1.324$

- (d) Investigate the characteristic equation $x^3 x 1 = 0$ and its real root
- 40. A clock pendulum loses energy on each swing. Each swing covers $\frac{9}{10}$ of the distance of the previous swing. The first swing covers 10 cm.
 - (a) Find the distance covered on the 15th swing
 - (b) Calculate the total distance traveled when the pendulum comes to rest
 - (c) Find the number of swings needed to cover 99% of the total distance
 - (d) If each swing takes time proportional to the square root of its distance, find the total time to rest

Section I: Applications and Problem Solving

- 41. A business loan of £75,000 is taken out at 7.5% annual compound interest. Monthly payments of £800 are made.
 - (a) Set up a recurrence relation for the amount owed after n months
 - (b) Find the amount owed after 30 months
 - (c) Determine how many months it takes to pay off the loan
 - (d) Calculate the total amount paid and the interest charged
- 42. A social media post goes viral. Each person who sees it shares it with 4 others every 2 hours. Initially, 20 people see the post.
 - (a) Model the number of people who see the post each period as a geometric sequence
 - (b) Find the number of new viewers after 24 hours
 - (c) After how many hours will the number of total viewers exceed 1 million?
 - (d) If the sharing rate decreases to 2.5 after 12 hours due to saturation, find the total viewers after 48 hours
- 43. A Sierpinski carpet fractal uses squares with areas forming the sequence: $81, 9, 1, \frac{1}{9}, \frac{1}{81}, \dots \text{ cm}^2$.
 - (a) Find the total area of all the squares in the fractal
 - (b) If each square's perimeter is 4 times the square root of its area, find the total perimeter
 - (c) If cutting costs £1 per cm of perimeter, find the total cutting cost
 - (d) What percentage of the total area is contributed by the first 4 generations?
- 44. A chemical reactor contains 800 mg of a substance. Every minute, 12% decomposes, and 40 mg of fresh substance is added.
 - (a) Set up a recurrence relation for the amount after n minutes
 - (b) Find the amount present after 15 minutes
 - (c) Determine the long-term equilibrium amount
 - (d) After how many minutes is the amount within 3% of the equilibrium?
- 45. A pension scheme involves contributing £4000 in the first year, £4400 in the second year, £4840 in the third year, and so on (increasing by 10% each year) for 35 years.
 - (a) Model the annual contributions as a geometric sequence
 - (b) Find the total amount contributed over 35 years
 - (c) If each contribution earns 8% annual compound interest from when it's made, find the total value after 35 years
 - (d) Compare this with contributing £4000 annually at 8% compound interest for 35 years

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepupmaths.co.uk