# A Level Statistics Practice Test 6: Hypothesis Testing

#### **Instructions:**

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Draw diagrams where appropriate to illustrate your solutions. Time allowed: 3 hours

## Section A: Survival Analysis and Specialized Tests [25 marks]

- 1. [12 marks] Define and explain survival analysis concepts:
  - (a) Define survival analysis and explain when it's used instead of traditional hypothesis tests.
  - (b) Explain censoring in survival data and different types of censoring.
  - (c) Define the survival function and hazard function.
  - (d) Explain the Kaplan-Meier estimator and its purpose.
  - (e) Describe the log-rank test for comparing survival curves.
  - (f) Explain Cox proportional hazards regression and its applications.
    - 2. [8 marks] Explain specialized hypothesis tests for specific distributions:
  - (a) Describe tests for normality (Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov).
  - (b) Explain tests for exponential distribution and their applications.
  - (c) Describe tests for Poisson distribution assumption in count data.
  - (d) Explain how to test for uniformity in data distributions.
    - 3. [5 marks] Analyze robust hypothesis testing methods:
  - (a) Define robust statistics and explain their advantages.
  - (b) Describe trimmed means and their use in hypothesis testing.
  - (c) Explain Welch's t-test for unequal variances.

## Section B: Sequential and Adaptive Testing [30 marks]

- 4. [15 marks] Define sequential analysis and adaptive designs:
  - (a) Explain sequential hypothesis testing and its advantages over fixed-sample designs.
  - (b) Define stopping rules and their role in sequential testing.
  - (c) Describe the Sequential Probability Ratio Test (SPRT).
  - (d) Explain adaptive clinical trial designs and their ethical advantages.
  - (e) Define interim analysis and alpha spending functions.
  - (f) Describe group sequential methods and their applications.
- 5. [15 marks] A pharmaceutical company conducts a sequential clinical trial testing a new drug against a placebo. They plan interim analyses after every 50 patients:

Analysis 1 (n=50): Treatment success: 28/25, Placebo success: 15/25, p-value = 0.02 Analysis 2 (n=100): Treatment success: 58/50, Placebo success: 32/50, p-value = 0.008 Analysis 3 (n=150): Treatment success: 89/75, Placebo success: 51/75, p-value = 0.001

Efficacy boundary: = 0.05 with Bonferroni correction for 5 planned analyses Futility boundary: Power; 20

- (a) Calculate the adjusted significance level for each interim analysis using Bonferroni correction.
- (b) Assess whether the trial should stop for efficacy at each analysis point.
- (c) Calculate the effect sizes (difference in proportions) at each analysis.
- (d) Explain the ethical considerations for continuing or stopping the trial.
- (e) Calculate confidence intervals for the treatment effect at each stage.
- (f) Discuss the advantages and disadvantages of this sequential approach.
- (g) Compare this to a fixed-sample design with n=150 and explain the benefits.
- (h) Calculate the number needed to treat (NNT) at each analysis.
- (i) Make a recommendation about trial continuation or termination.

## Section C: Machine Learning and Hypothesis Testing [35 marks]

- 6. [18 marks] Explain the intersection of machine learning and hypothesis testing:
  - (a) Describe the difference between prediction and inference in statistical modeling.
  - (b) Explain cross-validation and its role in model selection and testing.
  - (c) Define overfitting and explain how it affects hypothesis testing conclusions.
  - (d) Describe the bias-variance trade-off in the context of hypothesis testing.
  - (e) Explain regularization methods and their impact on statistical inference.
  - (f) Describe permutation importance and its use in feature significance testing.
  - (g) Explain the multiple testing problem in high-dimensional data analysis.
  - (h) Describe false discovery rate (FDR) control methods.

- (i) Explain how to test for model significance in machine learning contexts.
- 7. [17 marks] A data science team analyzes customer behavior using 500 features to predict purchase behavior. Their analysis reveals:

**Model Performance:** - Training accuracy: 94- Validation accuracy: 78- Test accuracy: 76- Cross-validation accuracy: 77

Feature Significance (Top 10 features):

| Feature          | Importance Score | p-value | FDR-adjusted p |
|------------------|------------------|---------|----------------|
| Age              | 0.15             | 0.001   | 0.025          |
| Income           | 0.12             | 0.002   | 0.040          |
| Purchase History | 0.10             | 0.008   | 0.080          |
| Website Time     | 0.09             | 0.015   | 0.094          |
| Email Opens      | 0.08             | 0.025   | 0.125          |
| Social Media     | 0.07             | 0.045   | 0.188          |
| Location         | 0.06             | 0.060   | 0.214          |
| Device Type      | 0.05             | 0.080   | 0.250          |
| Seasonality      | 0.04             | 0.120   | 0.333          |
| Referral Source  | 0.03             | 0.180   | 0.450          |

- (a) Assess whether the model shows evidence of overfitting and explain your reasoning.
- (b) Identify which features are statistically significant after FDR correction at = 0.05.
- (c) Explain why multiple testing correction is crucial in this high-dimensional setting.
- (d) Calculate the false discovery rate for the unadjusted p-values.
- (e) Discuss the trade-off between prediction accuracy and statistical interpretability.
- (f) Recommend additional validation methods to ensure robust inference.
- (g) Explain how to test whether the overall model is significantly better than random guessing.
- (h) Discuss the limitations of p-values in machine learning contexts.
- (i) Propose methods to improve both prediction and inference reliability.
- (j) Design a hypothesis testing framework for validating these customer insights.

## **Answer Space**

Use this space for your working and answers.

## Formulae and Key Concepts

## Survival Analysis:

Survival function: S(t) = P(T > t)Hazard function:  $h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$ Kaplan-Meier estimator:  $\hat{S}(t) = \prod_{t_i \le t} \left(1 - \frac{d_i}{n_i}\right)$ 

Log-rank test: Compares survival distributions between groups

## Sequential Testing:

SPRT: Continue sampling until sufficient evidence for H or H Alpha spending function:  $\alpha(t)$  allocates Type I error across analyses Bonferroni for k analyses:  $\alpha_{adj} = \frac{\alpha}{k}$ 

O'Brien-Fleming boundary: More stringent early stopping

## Multiple Testing Correction:

Bonferroni:  $\alpha_{adj} = \frac{\alpha}{m}$  (conservative)

Benjamini-Hochberg (FDR): Control expected proportion of false discoveries Holm-Bonferroni: Step-down procedure, less conservative than Bonferroni  $FDR = E\left[\frac{V}{R}\right]$  where V = false discoveries, R = total discoveries

## Effect Size Measures:

Number Needed to Treat:  $NNT = \frac{1}{|p_1 - p_2|}$ 

Relative Risk:  $RR = \frac{p_1}{p_2}$  Odds Ratio:  $OR = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$  Cohen's h for proportions:  $h = 2(\arcsin\sqrt{p_1} - \arcsin\sqrt{p_2})$ 

#### Model Validation:

Cross-validation: Split data into k folds, train on k-1, test on 1 Bootstrap validation: Resample with replacement, assess performance Permutation tests: Randomly permute labels to test model significance AUC-ROC: Area under receiver operating characteristic curve

#### **Robust Statistics:**

Trimmed mean: Remove extreme values before calculating mean Welch's t-test:  $t=\frac{\bar{x}_1-\bar{x}_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}$ 

Degrees of freedom: Satterthwaite approximation for unequal variances

## Normality Tests:

Shapiro-Wilk: Best for small samples (n; 50)

Anderson-Darling: Good power for detecting departures from normality Kolmogorov-Smirnov: Tests goodness of fit to any distribution

Q-Q plots: Visual assessment of normality

## **Machine Learning Metrics:**

Bias-Variance decomposition:  $MSE = Bias^2 + Variance + Noise$ Regularization parameter: controls model complexity Feature importance: Permutation-based or model-specific measures Overfitting indicators: Large gap between training and validation performance

#### **High-Dimensional Testing:**

Bonferroni becomes very conservative with many tests

FDR control more powerful than FWER control Benjamini-Hochberg procedure: Order p-values, find largest k where  $p_{(k)} \leq \frac{k}{m} \alpha$ 

### END OF TEST

Total marks: 90

For more resources and practice materials, visit: stepupmaths.co.uk