A Level Statistics Practice Test 5: Hypothesis Testing

Instructions:

Answer all questions. Show your working clearly.
Calculators may be used unless stated otherwise.

Draw diagrams where appropriate to illustrate your solutions.

Time allowed: 3 hours

Section A: Bayesian Inference and Modern Approaches [25 marks]

- 1. [12 marks] Define and explain Bayesian hypothesis testing concepts:
 - (a) Define prior probability, likelihood, and posterior probability in Bayesian inference.
 - (b) Explain Bayes' theorem and its role in updating beliefs about hypotheses.
 - (c) Compare frequentist and Bayesian approaches to hypothesis testing.
 - (d) Define Bayes factors and explain their interpretation.
 - (e) Explain the concept of credible intervals versus confidence intervals.
 - (f) Describe how to incorporate prior knowledge into hypothesis testing.
 - 2. [8 marks] Explain modern hypothesis testing considerations:
 - (a) Define the replication crisis and its implications for hypothesis testing.
 - (b) Explain pre-registration of studies and its importance.
 - (c) Describe publication bias and how it affects scientific literature.
 - (d) Explain the difference between exploratory and confirmatory data analysis.
 - 3. [5 marks] Analyze alternative approaches to traditional hypothesis testing:
 - (a) Explain estimation-based approaches versus hypothesis testing.
 - (b) Describe the American Statistical Association's statement on p-values.
 - (c) Explain the concept of statistical equivalence testing.

Section B: Bootstrap and Resampling Methods [30 marks]

- 4. [15 marks] Define and explain resampling techniques:
 - (a) Define the bootstrap method and explain its purpose in statistical inference.
 - (b) Explain how bootstrap confidence intervals are constructed.
 - (c) Describe permutation tests and when they are appropriate.
 - (d) Explain the difference between parametric and non-parametric bootstrap.
 - (e) Define jackknife resampling and its applications.
 - (f) Explain how resampling methods handle violations of traditional assumptions.
- 5. [15 marks] A research team studies the effectiveness of two learning methods using small samples:

Method A (n=8): 76, 82, 78, 85, 79, 83, 77, 81 Method B (n=7): 88, 84, 90, 86, 92, 87, 89 Traditional analysis shows: $\bar{x}_A = 80.1$, $s_A = 3.18$, $\bar{x}_B = 88.0$, $s_B = 2.71$

- (a) Perform a traditional two-sample t-test to compare the methods.
- (b) Explain why the small sample sizes might make traditional inference unreliable.
- (c) Describe how to perform a bootstrap test for the difference in means.
- (d) Outline the steps for a permutation test comparing the two groups.
- (e) Calculate a bootstrap confidence interval for the difference in means (conceptual steps).
- (f) Explain how bootstrap methods address the small sample size problem.
- (g) Compare the assumptions required for traditional t-tests versus resampling methods.
- (h) Discuss the advantages and limitations of resampling approaches.
- (i) Determine which method provides more reliable inference for this scenario.

Section C: Meta-Analysis and Evidence Synthesis [35 marks]

- 6. [18 marks] Define and explain meta-analysis concepts:
 - (a) Define meta-analysis and explain its purpose in synthesizing research evidence.
 - (b) Explain fixed-effects versus random-effects models in meta-analysis.
 - (c) Define heterogeneity and methods for assessing it (I² statistic).
 - (d) Explain publication bias and funnel plot analysis.
 - (e) Describe forest plots and their interpretation.
 - (f) Explain how to combine effect sizes across studies.
 - (g) Define fail-safe N and its interpretation.
 - (h) Describe sensitivity analysis in meta-analysis.
 - (i) Explain the importance of study quality assessment in meta-analysis.
- 7. [17 marks] A meta-analysis examines the effectiveness of a new educational intervention across multiple studies:

Study	Sample Size	Effect Size (d)	Standard Error	Weight	95% CI
Study 1	120	0.45	0.18	15%	[0.10, 0.80]
Study 2	200	0.32	0.14	25%	[0.04, 0.60]
Study 3	80	0.68	0.23	10%	[0.23, 1.13]
Study 4	150	0.28	0.16	20%	[-0.04, 0.60]
Study 5	180	0.51	0.15	22%	[0.22, 0.80]
Study 6	90	0.15	0.21	8%	[-0.26, 0.56]

Additional information: Overall effect size = 0.39, Q-statistic = 12.8, $I^2 = 61\%$

- (a) Calculate the weighted average effect size and verify the given result.
- (b) Test for heterogeneity using the Q-statistic (df = 5, critical value = 11.07 at = 0.05).
- (c) Interpret the I² statistic and assess the level of heterogeneity.
- (d) Identify which studies have confidence intervals that exclude zero.
- (e) Assess whether there's evidence of publication bias from the pattern of results.
- (f) Calculate the overall 95% confidence interval for the meta-analytic effect.
- (g) Perform a sensitivity analysis by removing the most extreme study.
- (h) Interpret the practical significance of the overall effect size.
- (i) Make recommendations for future research based on these findings.
- (j) Discuss limitations of this meta-analysis and potential sources of bias.

Answer Space

Use this space for your working and answers.

Formulae and Key Concepts

Bayesian Inference:

Bayes' Theorem: $P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)}$

Bayes Factor: $BF_{10} = \frac{P(D|H_1)}{P(D|H_0)}$ (evidence for H vs H)

Interpretation: BF ¿ 10 (strong), 3-10 (moderate), 1-3 (weak evidence)

Bootstrap Methods:

Bootstrap sample: Resample with replacement from original data Bootstrap confidence interval: Use percentiles of bootstrap distribution Bias-corrected bootstrap: Adjust for bias in bootstrap estimates Number of bootstrap samples: Typically 1000-10000

Permutation Tests:

Null hypothesis: No difference between groups Test statistic: Difference in means (or other measure) P-value: Proportion of permutations with test statistic observed Number of permutations: All possible or large random sample

Meta-Analysis:

Fixed effects weight: $w_i = \frac{1}{SE_i^2}$ Weighted mean: $\bar{d} = \frac{\sum w_i d_i}{\sum w_i}$ Standard error: $SE = \frac{1}{\sqrt{\sum w_i}}$

Heterogeneity:

Q-statistic: $Q = \sum_i w_i (d_i - \bar{d})^2$ I^2 statistic: $I^2 = \frac{Q - (k - 1)}{Q} \times 100\%$ Interpretation: I^2 ; 25% (low), 25-75% (moderate), ξ 75% (high)

Effect Size Interpretation:

Cohen's d: 0.2 (small), 0.5 (medium), 0.8 (large) Practical significance depends on context and cost-benefit analysis Statistical significance practical significance

Publication Bias:

Funnel plot: Effect size vs. standard error Symmetric plot suggests no bias

Egger's test: Linear regression of effect size on standard error Fail-safe N: Number of null studies needed to make effect non-significant

Modern Considerations:

Pre-registration: Specify hypotheses and analysis plan before data collection Multiple testing: Adjust for family-wise error rate Effect size reporting: Always report alongside p-values Confidence intervals: Provide range of plausible values

Alternative Approaches:

Equivalence testing: Test if difference is smaller than threshold Estimation focus: Emphasize effect sizes and confidence intervals Bayesian model averaging: Account for model uncertainty Robust methods: Less sensitive to outliers and violations

END OF TEST

Total marks: 90

For more resources and practice materials, visit: stepupmaths.co.uk