GCSE Higher Mathematics Practice Test 6: Algebra

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Linear and Simultaneous Equations

1. Solve these linear equations:

(a)
$$8(x-6) = 4x + 12$$

(b)
$$\frac{x+11}{5} - \frac{x-9}{3} = 4$$

(c)
$$\frac{7x-6}{12} = \frac{4x+5}{8} - 2$$

(d)
$$0.8x + 1.6 = 0.6x - 2.4$$

2. Solve these simultaneous equations by elimination:

(a)
$$\begin{cases} 7x + 6y = 37\\ 5x - 4y = 3 \end{cases}$$

(b)
$$\begin{cases} 4x + 9y = 38 \\ 8x - 5y = 14 \end{cases}$$

(b)
$$\begin{cases} 4x + 9y = 38 \\ 8x - 5y = 14 \end{cases}$$
(c)
$$\begin{cases} 7x + 4y = 29 \\ 5x - 8y = 17 \end{cases}$$

(d)
$$\begin{cases} 9x + 8y = 52 \\ 4x - 6y = 8 \end{cases}$$

3. Solve these simultaneous equations by substitution:

(a)
$$\begin{cases} y = 7x - 11 \\ 6x + 4y = 38 \end{cases}$$

(a)
$$\begin{cases} y = 7x - 11 \\ 6x + 4y = 38 \end{cases}$$
(b)
$$\begin{cases} x = 6y - 8 \\ 7x - 5y = 34 \end{cases}$$

(c)
$$\begin{cases} y = 15 - 6x \\ 5x + 8y = 65 \end{cases}$$

4. Find the graphical solution to these simultaneous equations by finding intersection points:

1

(a)
$$y = 7x - 5$$
 and $y = 16 - 4x$

(b)
$$y = x^2 - 11$$
 and $y = 5x + 1$

(c)
$$x^2 + y^2 = 29$$
 and $y = 5x - 3$

Section B: Quadratic Equations - Factoring

- 5. Factorize these quadratic expressions:
 - (a) $x^2 + 17x + 42$
 - (b) $x^2 15x 34$
 - (c) $x^2 19x + 84$
 - (d) $x^2 + 7x 30$
 - (e) $x^2 196$
 - (f) $x^2 28x + 196$
- 6. Solve these quadratic equations by factorizing:
 - (a) $x^2 + 17x + 70 = 0$
 - (b) $x^2 16x 17 = 0$
 - (c) $x^2 13x = 0$
 - (d) $x^2 225 = 0$
 - (e) $x^2 + 30x + 225 = 0$
 - (f) $7x^2 28x = 0$
- 7. Factorize these harder quadratics:
 - (a) $5x^2 + 12x + 7$
 - (b) $7x^2 19x + 6$
 - (c) $64x^2 81$
 - (d) $6x^2 + 17x 28$
 - (e) $64x^2 112x + 49$
 - (f) $10x^2 27x 9$
- 8. Solve by factorizing:
 - (a) $7x^2 + 15x 8 = 0$
 - (b) $8x^2 17x + 2 = 0$
 - (c) $49x^2 36 = 0$
 - (d) $5x^2 + 14x 3 = 0$

Section C: Completing the Square and Quadratic Formula

- 9. Complete the square for these expressions:
 - (a) $x^2 + 16x + 15$
 - (b) $x^2 20x + 7$
 - (c) $x^2 + 12x 9$
 - (d) $x^2 20x + 17$
 - (e) $7x^2 + 28x + 13$
 - (f) $3x^2 24x + 11$
- 10. Solve by completing the square:
 - (a) $x^2 + 16x + 13 = 0$
 - (b) $x^2 14x 7 = 0$

- (c) $x^2 + 10x 5 = 0$
- (d) $7x^2 + 14x 3 = 0$
- 11. Use the quadratic formula to solve (leave in surd form where appropriate):
 - (a) $x^2 + 13x 6 = 0$
 - (b) $7x^2 15x + 6 = 0$
 - (c) $x^2 16x + 11 = 0$
 - (d) $6x^2 + 11x 7 = 0$
 - (e) $5x^2 + 12x + 4 = 0$
 - (f) $9x^2 13x 4 = 0$
- 12. Find the discriminant and state the nature of the roots:
 - (a) $x^2 + 15x + 36 = 0$
 - (b) $x^2 14x + 49 = 0$
 - (c) $x^2 + 7x + 15 = 0$
 - (d) $6x^2 13x + 6 = 0$

Section D: Quadratic Graphs and Applications

- 13. For the quadratic $y = x^2 14x + 45$:
 - (a) Find the y-intercept
 - (b) Find the x-intercepts by factorizing
 - (c) Complete the square to find the vertex
 - (d) Sketch the graph
 - (e) State the line of symmetry
- 14. For the quadratic $y = 6x^2 + 18x 8$:
 - (a) Complete the square
 - (b) Find the coordinates of the vertex
 - (c) Find the y-intercept
 - (d) State the line of symmetry
 - (e) Sketch the graph
- 15. A tennis ball is hit upward. Its height h (in meters) after t seconds is given by: $h = -5t^2 + 50t + 5$
 - (a) What is the initial height?
 - (b) At what times is the tennis ball at ground level?
 - (c) What is the maximum height reached?
 - (d) At what time does it reach maximum height?
- 16. The revenue R (in thousands of pounds) from selling x thousand units is: $R = -4x^2 + 20x 16$
 - (a) How many units should be sold to maximize revenue?
 - (b) What is the maximum revenue?
 - (c) At what production levels is the revenue £5,000?

Section E: Linear Inequalities

- 17. Solve these linear inequalities:
 - (a) 8x + 15 > 47
 - (b) $7x 17 \le 32$
 - (c) 11 8x < 3
 - (d) $\frac{x+9}{5} \ge 4$
 - (e) 9 8x > 7x + 24
 - (f) $\frac{7x-6}{8} < \frac{x+9}{5}$
- 18. Show these inequalities on number lines:
 - (a) x > -7
 - (b) $x \le 9$
 - (c) $-4 < x \le 10$
 - (d) x < 6 or x > 11
- 19. Solve these compound inequalities:
 - (a) -9 < 7x + 5 < 19
 - (b) 13 < 6x 5 < 31
 - (c) $-4 \le \frac{7x+5}{5} < 11$
- 20. Find the integer solutions to:
 - (a) 7x + 11 > 25 and x < 10
 - (b) $-5 \le x + 3 < 9$
 - (c) $x^2 < 81$

Section F: Quadratic Inequalities

- 21. Solve these quadratic inequalities:
 - (a) $x^2 15x + 36 > 0$
 - (b) $x^2 16x + 39 < 0$
 - (c) $x^2 121 < 0$
 - (d) $x^2 + 7x 18 \ge 0$
 - (e) $x^2 16x + 64 > 0$
 - (f) $5x^2 6x 8 < 0$
- 22. Solve and show on number lines:
 - (a) $x^2 144 \le 0$
 - (b) $x^2 + 6x 16 > 0$
 - (c) $4x^2 11x + 6 \ge 0$
- 23. Find the values of x for which:
 - (a) $x^2 < 8x + 9$
 - (b) $5x^2 + 11x \ge 12$
 - (c) $x^2 + 14x + 49 \le 0$

Section G: Algebraic Manipulation

- 24. Expand and simplify:
 - (a) (x+10)(7x-5)
 - (b) (6x-7)(x+11)
 - (c) $(5x+10)^2$
 - (d) $(9x-7)^2$
 - (e) (x+15)(x-15)
 - (f) (8x+5)(8x-5)
- 25. Expand these expressions:
 - (a) $(x+7)(x^2-6x+8)$
 - (b) $(5x-6)(x^2+5x-4)$
 - (c) $(x+6)^3$
 - (d) $(6x-4)^3$
- 26. Factorize completely:
 - (a) $16x^2 + 24x$
 - (b) $49x^2 169$
 - (c) $x^3 36x$
 - (d) $7x^3 + 28x^2 + 28x$
 - (e) $x^3 512$
 - (f) $343x^3 + 216$
- 27. Simplify these algebraic fractions:
 - (a) $\frac{x^2-49}{x+7}$
 - (b) $\frac{x^2 + 15x + 56}{x + 8}$ (c) $\frac{8x^2 32}{x^2 4}$

 - (d) $\frac{x^3-512}{x^2-64}$

Section H: Algebraic Fractions and Advanced Topics

- 28. Add and subtract these algebraic fractions:
 - (a) $\frac{8}{x} + \frac{5}{x}$
 - (b) $\frac{12}{x} \frac{7}{x}$
 - (c) $\frac{5}{8x} + \frac{1}{16x}$
 - (d) $\frac{7}{x+5} + \frac{4}{x-6}$
 - (e) $\frac{x}{x+7} \frac{6}{x-4}$
 - (f) $\frac{7x}{x^2-36} + \frac{6}{x+6}$
- 29. Multiply and divide these algebraic fractions:
 - (a) $\frac{x}{8} \times \frac{24}{x^2}$
 - (b) $\frac{x+7}{9} \times \frac{18}{x+7}$
 - (c) $\frac{x^2-49}{x+6} \div \frac{x-7}{x+6}$

- (d) $\frac{7x+21}{x^2-64} \times \frac{x-8}{14}$
- 30. Solve these equations involving algebraic fractions:
 - (a) $\frac{x}{8} + \frac{x}{6} = 21$
 - (b) $\frac{7x+6}{9} = \frac{x-5}{6}$
 - (c) $\frac{8}{x} = \frac{7}{x-6}$
 - (d) $\frac{x+6}{x-7} = \frac{5x}{x+6}$
- 31. Make the subject of these formulae:
 - (a) $D = \frac{m}{V}$, make m the subject
 - (b) $C = \frac{5}{9}(F 32)$, make F the subject
 - (c) $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, make u the subject
 - (d) $I = \frac{PRT}{100}$, make T the subject

Section I: Sequences

- 32. Find the nth term for these arithmetic sequences:
 - (a) $17, 23, 29, 35, \dots$
 - (b) 10, 17, 24, 31, ...
 - (c) $50, 46, 42, 38, \dots$
 - (d) $\frac{3}{10}$, $\frac{7}{10}$, $\frac{11}{10}$, $\frac{15}{10}$, ...
- 33. For these geometric sequences, find the nth term:
 - (a) $7, 21, 63, 189, \dots$
 - (b) 10, 40, 160, 640, ...
 - (c) 384, 192, 96, 48, ...
 - (d) $6, -24, 96, -384, \dots$
- 34. Find the sum of these series:
 - (a) First 45 terms of 11 + 15 + 19 + 23 + ...
 - (b) First 4 terms of 9 + 27 + 81 + 243 + ...
 - (c) 6 + 10 + 14 + ... + 102 (arithmetic series)
 - (d) 8+16+32+...+512 (geometric series)
- 35. These are quadratic sequences. Find the nth term:
 - (a) 7, 28, 63, 112, 175, ...
 - (b) $6, 17, 34, 57, 86, \dots$
 - (c) $5, 20, 45, 80, 125, \dots$
 - (d) 9, 26, 49, 78, 113, ...
- 36. A sequence is defined by $u_1 = 7$ and $u_{n+1} = 5u_n 6$.
 - (a) Find the first 5 terms
 - (b) Find a formula for u_n
 - (c) Calculate u_4

Section J: Problem Solving

- 37. The sum of two numbers is 34 and their product is 280. Find the two numbers.
- 38. A rectangular field has perimeter 80m. If the length is 16m more than the width, find the dimensions.
- 39. The difference between a positive number and its reciprocal is $\frac{63}{8}$. Find the number.
- 40. A soccer ball's height h (in meters) after t seconds is given by: $h = 160t 5t^2$
 - (a) When does it hit the ground?
 - (b) What is its maximum height?
 - (c) When is it 1200m high?
- 41. Prove that the sum of the first n terms of the sequence $4, 8, 12, 16, \dots$ is 2n(n+1).
- 42. The quadratic $px^2 + qx + r = 0$ has roots α and β .
 - (a) Show that $\alpha + \beta = -\frac{q}{p}$
 - (b) Show that $\alpha\beta = \frac{r}{p}$
 - (c) If the roots are 8 and -5, find p, q, and r when p=5
- 43. A function is defined as $m(x) = x^2 + fx + g$. If m(4) = 21 and m(6) = 41, find f and g.
- 44. The sum of the first n terms of a sequence is $S_n = 7n^2 4n$. Find the nth term of the sequence.

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$