GCSE Higher Mathematics Practice Test 7: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 9^2
 - (b) 7^{-2}
 - (c) 19^0
 - (d) $(-9)^2$
 - (e) $(-5)^3$
 - (f) 12^{-2}
- 2. Write these as single powers:
 - (a) $8^6 \times 8^{11}$
 - (b) $15^{10} \div 15^4$
 - (c) $(6^8)^5$
 - (d) $11^{-1} \times 11^{13}$
 - (e) $\frac{17^9}{17^{-7}}$
 - $(f) (9^6)^{-3}$
- 3. Evaluate these fractional indices:
 - (a) $121^{\frac{1}{2}}$
 - (b) $512^{\frac{1}{3}}$
 - (c) $32768^{\frac{3}{5}}$
 - (d) $100000000^{\frac{2}{7}}$
 - (e) $2197^{\frac{2}{3}}$
 - (f) $2048^{-\frac{3}{11}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{225}$
 - (b) $\sqrt[3]{1000}$

- (c) $\sqrt[4]{4096}$
- (d) $\sqrt{2.25}$
- (e) $\sqrt[3]{-729}$
- (f) $\sqrt[5]{100000}$
- 5. Express in index form:
 - (a) $\sqrt{29}$
 - (b) $\sqrt[3]{19}$
 - (c) $\frac{1}{\sqrt{17}}$
 - (d) $\sqrt[4]{s^{15}}$
 - (e) $\frac{1}{\sqrt[3]{h^{11}}}$
 - (f) $\sqrt{s} \times \sqrt[3]{s}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $8^7 \times 8^{-10} \times 8^{11}$
 - (b) $\frac{12^{12} \times 12^{-8}}{12^{-7}}$
 - (c) $(9^5)^{-7} \times 9^{20}$
 - (d) $\frac{13^{-8} \times 13^{17}}{13^7}$
- 7. Evaluate these expressions:
 - (a) $2197^{\frac{2}{3}}$
 - (b) $16807^{-\frac{3}{5}}$
 - (c) $1000000^{\frac{2}{5}}$
 - (d) $32768^{-\frac{5}{15}}$
 - (e) $8000^{\frac{1}{3}}$
 - (f) $1000000^{-\frac{2}{6}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{9}{10}} \times x^{\frac{1}{5}}$
 - (b) $\frac{n^{\frac{11}{4}}}{n^{\frac{1}{6}}}$
 - (c) $(h^{\frac{1}{8}})^{16}$
 - (d) $\sqrt{s} \times s^{\frac{1}{9}}$
 - (e) $\frac{\sqrt[3]{t^{11}}}{\sqrt{t}}$
 - (f) $(w^{-\frac{1}{8}})^{-16}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{19} \times 19^8$
 - (b) $\frac{23^6}{\sqrt[3]{23}}$
 - (c) $\sqrt[4]{14^{15}} \times 14^{-\frac{5}{6}}$
 - (d) $\frac{\sqrt{29}}{\sqrt[3]{29^{11}}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{92}$
 - (b) $\sqrt{136}$
 - (c) $\sqrt{152}$
 - (d) $\sqrt{245}$
 - (e) $\sqrt{272}$
 - (f) $\sqrt{900}$
- 11. Simplify these expressions:
 - (a) $9\sqrt{19} + 15\sqrt{19}$
 - (b) $19\sqrt{8} 8\sqrt{8}$
 - (c) $\sqrt{68} + \sqrt{153}$
 - (d) $\sqrt{245} \sqrt{180}$
 - (e) $8\sqrt{28} + 11\sqrt{63}$
 - (f) $\sqrt{245} \sqrt{147} + \sqrt{45}$
- 12. Multiply and simplify:
 - (a) $\sqrt{13} \times \sqrt{52}$
 - (b) $\sqrt{28} \times \sqrt{112}$
 - (c) $9\sqrt{6} \times 7\sqrt{24}$
 - (d) $\sqrt{20} \times \sqrt{80}$
 - (e) $\sqrt{9} \times \sqrt{36} \times \sqrt{144}$
 - (f) $11\sqrt{8} \times 7\sqrt{32}$
- 13. Expand and simplify:
 - (a) $(8 + \sqrt{17})(5 \sqrt{17})$
 - (b) $(7 + \sqrt{23})(4 + 8\sqrt{23})$
 - (c) $(10 \sqrt{19})^2$
 - (d) $(\sqrt{29} + \sqrt{11})(\sqrt{29} \sqrt{11})$
 - (e) $(8\sqrt{17}+1)(8\sqrt{17}-1)$
 - (f) $(\sqrt{23} + 8)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{23}}$
 - (b) $\frac{17}{\sqrt{29}}$
 - (c) $\frac{\sqrt{17}}{\sqrt{68}}$
 - (d) $\frac{16}{8\sqrt{2}}$
 - (e) $\frac{1}{7+\sqrt{17}}$
 - $(f) \ \frac{11}{1-\sqrt{23}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{13}{8+\sqrt{19}}$
 - (b) $\frac{19}{7-\sqrt{31}}$
 - $(c) \frac{\sqrt{17}}{1+\sqrt{17}}$
 - (d) $\frac{8\sqrt{23}}{7+\sqrt{23}}$
 - (e) $\frac{1}{\sqrt{24} \sqrt{17}}$
 - (f) $\frac{\sqrt{23}+7}{\sqrt{23}-8}$
- 16. Simplify these expressions completely:
 - $(a) \ \frac{\sqrt{36} + \sqrt{81}}{\sqrt{9}}$
 - (b) $\frac{\sqrt{98} \sqrt{72}}{\sqrt{2}}$
 - (c) $\sqrt{(9+\sqrt{23})(9-\sqrt{23})}$
 - (d) $\sqrt{152} 8\sqrt{38} + \sqrt{98}$
 - (e) $(\sqrt{17} + \sqrt{68})^2$
 - (f) $\frac{\sqrt{136}}{\sqrt{17}} + \frac{\sqrt{102}}{\sqrt{17}}$
- 17. Prove that:
 - (a) $(\sqrt{b} + \sqrt{c})(\sqrt{b} \sqrt{c}) = b c$
 - (b) $\frac{1}{\sqrt{d}+\sqrt{f}} = \frac{\sqrt{d}-\sqrt{f}}{d-f}$
 - (c) $(d + f\sqrt{y})^2 = d^2 + 2df\sqrt{y} + f^2y$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 923000
 - (b) 0.000128
 - (c) 7890000000
 - (d) 0.0000000517
 - (e) 1258.3
 - (f) 0.01287
- 19. Write these in ordinary form:
 - (a) 1.08×10^0
 - (b) 8.91×10^{-10}
 - (c) 1.2543×10^{-13}
 - (d) 7.69×10^{16}
 - (e) 1.28×10^{-8}
 - (f) 9.23×10^{11}
- 20. Calculate, giving answers in standard form:

- (a) $(11 \times 10^{10}) \times (13 \times 10^{12})$
- (b) $(8 \times 10^{-8}) \times (15 \times 10^{13})$
- (c) $(24 \times 10^{11}) \div (8 \times 10^{-6})$
- (d) $(21 \times 10^{-10}) \div (14 \times 10^{-13})$
- (e) $(11 \times 10^9)^2$
- (f) $\sqrt{81 \times 10^{20}}$
- 21. Calculate these more complex expressions:
 - (a) $(8.4 \times 10^9) \times (3.25 \times 10^{-11})$
 - (b) $\frac{16.8 \times 10^{12}}{4.2 \times 10^{-9}}$
 - (c) $(9.2 \times 10^{-8}) + (1.07 \times 10^{-7})$
 - (d) $(11.9 \times 10^{11}) (8.6 \times 10^{10})$
 - (e) $\frac{(8.1\times10^7)\times(7.2\times10^{-8})}{(8.1\times10^7)\times(7.2\times10^{-8})}$
 - (f) $(1.0404 \times 10^{18})^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):
 - (a) $\frac{8}{15} + \frac{11}{30}$

 - (b) $\frac{15}{24} \frac{30}{36}$ (c) $\frac{18}{19} \times \frac{38}{27}$ (d) $\frac{16}{31} \div \frac{24}{42}$ (e) $\frac{13}{14} \frac{9}{21} + \frac{17}{42}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{9}$
 - (b) $0.\overline{82}$
 - (c) $0.7\overline{3}$
 - (d) $0.\overline{571428}$
 - (e) $6.2\overline{4}$
 - (f) $0.82\overline{9}$
- 24. Work out these percentage calculations:
 - (a) Increase 880 by 75%
 - (b) Decrease 1080 by 36%
 - (c) Find 42.5% of 1240
 - (d) What percentage is 168 out of 224?
 - (e) If 95% of a number is 247, find the number
 - (f) A price increases from £135 to £148.5. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 80% increase, a price is £324. Find the original price
 - (b) After a 75% decrease, a quantity is 144. Find the original quantity
 - (c) The value of a car decreases by 50% each year. If it's worth £7500 now, what was it worth 2 years ago?
 - (d) An investment grows by 11% per year. After 2 years it's worth £2468.1. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $8^{-2} + 13^0 14^{-1}$
 - (b) $\sqrt{100} \times 1000^{\frac{1}{3}} 8^{-2}$
 - (c) $\frac{2197^{\frac{2}{3}} 32768^{\frac{3}{5}}}{121^{\frac{1}{2}}}$
 - (d) $64^{-\frac{1}{2}} + 121^{\frac{1}{2}} \times 7^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{13}{\sqrt{17}} + \frac{9}{\sqrt{68}}$
 - (b) $\sqrt{63} \times \sqrt{112} \sqrt{252}$
 - (c) $\frac{\sqrt{196} + \sqrt{147}}{\sqrt{49}}$
 - (d) $(8\sqrt{3}-7)^2$
- 28. Work with standard form in context:
 - (a) The mass of a hydrogen atom is 1.674×10^{-27} kg. Find the mass of 6.02×10^{23} hydrogen atoms
 - (b) Microwaves travel at 3×10^8 m/s. How far do they travel in one year (use 1 year = 3.154×10^7 seconds)?
 - (c) The diameter of a bacterium is approximately 2×10^{-6} m. How many bacteria would fit across a distance of 1.2 cm?
 - (d) A neural network processes 2.88×10^{15} operations per second. How many operations in 30 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{17}$ is irrational. (Use proof by contradiction: assume $\sqrt{17} = \frac{x}{y}$ where x and y are integers with no common factors)
- 30. The number ϵ satisfies $\epsilon^2 = 6\epsilon 4$.
 - (a) Show that $\epsilon = 3 + \sqrt{5}$
 - (b) Calculate ϵ to 4 decimal places
 - (c) Find $\frac{1}{\epsilon}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{13}+\sqrt{17}+\sqrt{19}}$. (Hint: First rationalize using $(\sqrt{13}+\sqrt{17})-\sqrt{19}$)
- 32. A rectangle has sides of length $(8 + \sqrt{17})$ cm and $(8 \sqrt{17})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of fungi octuples every 12 hours. If there are initially 11×10^2 fungi:
 - (a) How many fungi after 48 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 2×10^{11} fungi?

- 34. Show that $\frac{1}{\sqrt{b}+\sqrt{c}} + \frac{1}{\sqrt{b}-\sqrt{c}} = \frac{2\sqrt{b}}{b-c}$
- 35. A sphere has volume $V = \frac{4}{3}\pi r^3$. If the volume is 704π cm³:
 - (a) Find the radius in surd form
 - (b) Find the surface area (use $A=4\pi r^2$)
 - (c) Express both answers exactly
- 36. The equation $x^2 16x + 1 = 0$ has solutions $x = 8 \pm 3\sqrt{7}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{8+3\sqrt{7}} + \frac{1}{8-3\sqrt{7}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$