A Level Statistics Practice Test 3: Measures of Location and Spread

Instructions:

Answer all questions. Show your working clearly.
Calculators may be used unless stated otherwise.

Draw diagrams where appropriate to illustrate your solutions.

Time allowed: 3 hours

Section A: Skewness and Distribution Shape Analysis [25 marks]

- 1. [12 marks] Define and analyze skewness in data distributions:
 - (a) Define positive (right) skewness and negative (left) skewness.
 - (b) Explain the relationship between mean, median, and mode in skewed distributions.
 - (c) Calculate Pearson's coefficient of skewness using the formula: Skewness = $\frac{3(\text{mean-median})}{\text{standard deviation}}$
 - (d) For a dataset with mean = 85, median = 78, standard deviation = 12, calculate and interpret the skewness.
 - (e) Describe what the quartile-based skewness measure $\frac{(Q3-Q2)-(Q2-Q1)}{Q3-Q1}$ tells us about distribution shape.
 - (f) Explain how outliers affect measures of skewness and central tendency.
- 2. [8 marks] Analyze the following three datasets for distribution shape:

 Dataset A: Mean = 50, Median = 52, Mode = 55, SD = 8 Dataset B: Mean = 72, Median = 72, Mode = 72, SD = 10 Dataset C: Mean = 65, Median = 70, Mode = 75, SD = 15
 - (a) Calculate Pearson's coefficient of skewness for each dataset.
 - (b) Classify each distribution as symmetric, positively skewed, or negatively skewed.
 - (c) Sketch the approximate shape of each distribution.
 - (d) For each dataset, predict which measure of central tendency would be most representative and justify your choice.
 - 3. [5 marks] Analyze kurtosis and distribution characteristics:
 - (a) Define kurtosis and explain what it measures about distribution shape.
 - (b) Distinguish between platykurtic, mesokurtic, and leptokurtic distributions.
 - (c) Explain how kurtosis affects the interpretation of standard deviation and outliers.

Section B: Robust Statistics and Resistant Measures [30 marks]

- 4. [15 marks] Define and calculate robust statistical measures:
 - (a) Define robust statistics and explain why they're important in data analysis.
 - (b) Calculate the trimmed mean (10
 - (c) Compare the trimmed mean with the regular mean and explain the difference.
 - (d) Define the median absolute deviation (MAD) and calculate it for the dataset above.
 - (e) Compare MAD with standard deviation as measures of spread.
 - (f) Explain when robust measures should be preferred over traditional measures.
 - 5. [15 marks] Analyze the impact of outliers on different statistical measures: Consider the dataset: 85, 88, 90, 92, 94, 96, 98, 100, 102, 105, 150
 - (a) Identify the outlier(s) using the IQR method.
 - (b) Calculate: mean, median, standard deviation, and IQR with the outlier included.
 - (c) Recalculate the same measures after removing the outlier(s).
 - (d) Calculate the percentage change in each measure when the outlier is removed.
 - (e) Determine which measures are most resistant to outliers.
 - (f) Create box plots with and without outliers to visualize the effect.
 - (g) Calculate the 5
 - (h) Discuss scenarios where removing outliers would or wouldn't be appropriate.

Section C: Advanced Grouped Data Analysis and Interpolation [35 marks]

6. [18 marks] A survey of household incomes (£000s) in a region produces the following data:

Income (£000s)	Frequency	Cumulative Frequency
10-20	18	18
20-30	32	50
30-40	45	95
40-50	38	133
50-60	25	158
60-80	22	180
80-120	12	192
120-200	8	200

- (a) Calculate the estimated mean income using appropriate midpoints.
- (b) Use linear interpolation to estimate the median income.
- (c) Calculate the first and third quartiles using interpolation.
- (d) Estimate the 90th percentile income.
- (e) Calculate the estimated standard deviation.
- (f) Determine the modal class and estimate the mode using interpolation.

- (g) Calculate Pearson's coefficient of skewness and interpret the result.
- (h) Estimate what percentage of households earn between £25,000 and £75,000.
- (i) Comment on the distribution of income and identify any unusual features.
 - 7. [17 marks] Compare two different frequency distributions representing test scores: Class A:

Score	Frequency
0-20	2
20-40	8
40-60	15
60-80	18
80-100	7

Class B:

Score	Frequency
0-25	3
25-50	12
50-75	20
75-100	15

- (a) Calculate the estimated mean for each class.
- (b) Estimate the median for each class using interpolation.
- (c) Calculate the estimated standard deviation for each class.
- (d) Determine which class has more consistent performance.
- (e) Calculate the coefficient of variation for each class.
- (f) Estimate the percentage of students in each class who achieved above 70
- (g) Use Pearson's coefficient to assess the skewness of each distribution.
- (h) Which class performed better overall? Justify your answer with statistical evidence.
- (i) Discuss the challenges of comparing these distributions given their different class intervals.

Answer Space

Use this space for your working and answers.

Formulae and Key Concepts

Skewness Measures:

Pearson's coefficient: Skewness = $\frac{3(\text{mean-median})}{\text{standard deviation}}$ Quartile skewness: $\frac{(Q3-Q2)-(Q2-Q1)}{Q3-Q1}$

Interpretation: Positive = right skewed, Negative = left skewed, 0 = symmetric

Robust Measures:

Trimmed mean: Remove extreme values, calculate mean of remaining data Median Absolute Deviation: $MAD = \text{median}(|x_i - \text{median}|)$ Interquartile range: IQR = Q3 - Q1 (resistant to outliers)

Interpolation for Grouped Data:

Linear interpolation: $x = L + \frac{(n \times p - CF_{before})}{f} \times h$ where L = lower boundary, p = proportion (0.5 for median, 0.25 for Q1, etc.) CF = cumulative frequency, f = class frequency, h = class width

Modal Class Estimation:

 $\text{Mode } L + \frac{f_1 - f_0}{(f_1 - f_0) + (f_1 - f_2)} \times h$ where $f_1 = \text{modal class frequency}, f_0 = \text{frequency before}, f_2 = \text{frequency after}$

Distribution Shape Relationships:

Symmetric: Mean Median Mode Right skewed: Mean ; Median ; Mode Left skewed: Mean ; Median ; Mode

Outlier Impact:

Mean: Highly affected by outliers Median: Resistant to outliers Standard deviation: Highly affected IQR: Resistant to outliers

Kurtosis:

Leptokurtic: Heavy tails, sharp peak (kurtosis ; 3) Mesokurtic: Normal-like (kurtosis 3) Platykurtic: Light tails, flat peak (kurtosis; 3)

Coefficient of Variation:

 $CV = \frac{\text{Standard Deviation}}{\text{Mean}} \times 100\%$ Used for comparing variability between different scales

Percentile Calculations:

Position of kth percentile: $P_k = \frac{k(n+1)}{100}$ For grouped data: Use interpolation with cumulative frequencies

Resistance to Outliers (Most to Least):

1. Median (most resistant)

2. IQR

3. Trimmed mean

4. Mode

5. Mean (least resistant)

6. Standard deviation (least resistant)

END OF TEST

Total marks: 90

For more resources and practice materials, visit: stepup maths.co.uk $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2$