GCSE Higher Mathematics Practice Test 3: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 4^3
 - (b) 5^{-2}
 - (c) 9^0
 - (d) $(-4)^2$
 - (e) $(-5)^3$
 - (f) 6^{-2}
- 2. Write these as single powers:
 - (a) $4^2 \times 4^7$
 - (b) $6^8 \div 6^5$
 - $(c) (2^4)^3$
 - (d) $3^{-5} \times 3^9$
 - (e) $\frac{7^6}{7^{-4}}$
 - $(f) (5^3)^{-3}$
- 3. Evaluate these fractional indices:
 - (a) $36^{\frac{1}{2}}$
 - (b) $64^{\frac{1}{3}}$
 - (c) $625^{\frac{3}{4}}$
 - (d) $1024^{\frac{2}{5}}$
 - (e) $216^{\frac{2}{3}}$
 - (f) $32^{-\frac{3}{5}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{100}$
 - (b) $\sqrt[3]{216}$

- (c) $\sqrt[4]{625}$
- (d) $\sqrt{0.49}$
- (e) $\sqrt[3]{-125}$
- (f) $\sqrt[5]{1024}$
- 5. Express in index form:
 - (a) $\sqrt{13}$
 - (b) $\sqrt[3]{9}$
 - (c) $\frac{1}{\sqrt{5}}$
 - (d) $\sqrt[4]{z^7}$
 - (e) $\frac{1}{\sqrt[3]{c^5}}$
 - (f) $\sqrt{z} \times \sqrt[3]{z}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $4^3 \times 4^{-5} \times 4^6$
 - (b) $\frac{6^8 \times 6^{-4}}{6^{-3}}$
 - (c) $(3^4)^{-3} \times 3^{11}$
 - (d) $\frac{5^{-4} \times 5^9}{5^3}$
- 7. Evaluate these expressions:
 - (a) $125^{\frac{2}{3}}$
 - (b) $16^{-\frac{5}{4}}$
 - (c) $243^{\frac{2}{5}}$
 - (d) $64^{-\frac{4}{3}}$
 - (e) $216^{\frac{1}{3}}$
 - (f) $625^{-\frac{3}{4}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{4}{5}} \times x^{\frac{1}{2}}$
 - (b) $\frac{w^{\frac{7}{3}}}{w^{\frac{1}{6}}}$
 - (c) $(c^{\frac{1}{4}})^8$
 - (d) $\sqrt{z} \times z^{\frac{1}{5}}$
 - (e) $\frac{\sqrt[3]{p^5}}{\sqrt{p}}$
 - (f) $(r^{-\frac{1}{4}})^{-8}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{5} \times 5^4$
 - (b) $\frac{9^2}{\sqrt[3]{9}}$
 - (c) $\sqrt[4]{6^7} \times 6^{-\frac{1}{2}}$
 - (d) $\frac{\sqrt{13}}{\sqrt[3]{13^5}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{45}$
 - (b) $\sqrt{63}$
 - (c) $\sqrt{80}$
 - (d) $\sqrt{112}$
 - (e) $\sqrt{162}$
 - (f) $\sqrt{500}$
- 11. Simplify these expressions:
 - (a) $5\sqrt{3} + 8\sqrt{3}$
 - (b) $11\sqrt{7} 4\sqrt{7}$
 - (c) $\sqrt{20} + \sqrt{45}$
 - (d) $\sqrt{63} \sqrt{28}$
 - (e) $4\sqrt{8} + 5\sqrt{32}$
 - (f) $\sqrt{125} \sqrt{80} + \sqrt{20}$
- 12. Multiply and simplify:
 - (a) $\sqrt{6} \times \sqrt{24}$
 - (b) $\sqrt{15} \times \sqrt{60}$
 - (c) $4\sqrt{3} \times 5\sqrt{12}$
 - (d) $\sqrt{10} \times \sqrt{40}$
 - (e) $\sqrt{5} \times \sqrt{20} \times \sqrt{80}$
 - (f) $5\sqrt{8} \times 3\sqrt{18}$
- 13. Expand and simplify:
 - (a) $(4+\sqrt{5})(3-\sqrt{5})$
 - (b) $(3+\sqrt{11})(2+4\sqrt{11})$
 - (c) $(6-\sqrt{7})^2$
 - (d) $(\sqrt{13} + \sqrt{2})(\sqrt{13} \sqrt{2})$
 - (e) $(4\sqrt{5}+1)(4\sqrt{5}-1)$
 - (f) $(\sqrt{11} + 4)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{11}}$
 - (b) $\frac{7}{\sqrt{13}}$
 - (c) $\frac{\sqrt{5}}{\sqrt{20}}$
 - (d) $\frac{8}{4\sqrt{3}}$
 - (e) $\frac{1}{3+\sqrt{5}}$
 - (f) $\frac{4}{1-\sqrt{11}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{5}{4+\sqrt{7}}$
 - (b) $\frac{9}{3-\sqrt{17}}$
 - (c) $\frac{\sqrt{5}}{1+\sqrt{5}}$
 - (d) $\frac{4\sqrt{11}}{3+\sqrt{11}}$
 - (e) $\frac{1}{\sqrt{12}-\sqrt{5}}$
 - (f) $\frac{\sqrt{11}+3}{\sqrt{11}-4}$
- 16. Simplify these expressions completely:
 - (a) $\frac{\sqrt{20} + \sqrt{45}}{\sqrt{5}}$
 - (b) $\frac{\sqrt{54} \sqrt{24}}{\sqrt{6}}$
 - (c) $\sqrt{(5+\sqrt{11})(5-\sqrt{11})}$
 - (d) $\sqrt{80} 4\sqrt{5} + \sqrt{45}$
 - (e) $(\sqrt{5} + \sqrt{20})^2$
 - (f) $\frac{\sqrt{72}}{\sqrt{8}} + \frac{\sqrt{50}}{\sqrt{8}}$
- 17. Prove that:
 - (a) $(\sqrt{u} + \sqrt{v})(\sqrt{u} \sqrt{v}) = u v$
 - (b) $\frac{1}{\sqrt{s}+\sqrt{t}} = \frac{\sqrt{s}-\sqrt{t}}{s-t}$
 - (c) $(s + t\sqrt{w})^2 = s^2 + 2st\sqrt{w} + t^2w$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 567000
 - (b) 0.000083
 - (c) 3450000000
 - (d) 0.0000000156
 - (e) 892.7
 - (f) 0.00834
- 19. Write these in ordinary form:
 - (a) 6.9×10^4
 - (b) 4.58×10^{-6}
 - (c) 7.432×10^{-9}
 - (d) 3.25×10^{12}
 - (e) 8.7×10^{-4}
 - (f) 5.67×10^7
- 20. Calculate, giving answers in standard form:

- (a) $(5 \times 10^6) \times (4 \times 10^8)$
- (b) $(9 \times 10^{-4}) \times (7 \times 10^9)$
- (c) $(12 \times 10^7) \div (3 \times 10^{-4})$
- (d) $(8 \times 10^{-6}) \div (4 \times 10^{-9})$
- (e) $(6 \times 10^5)^2$
- (f) $\sqrt{25 \times 10^{12}}$
- 21. Calculate these more complex expressions:
 - (a) $(4.8 \times 10^5) \times (1.25 \times 10^{-7})$
 - (b) $\frac{9.6 \times 10^8}{3.2 \times 10^{-5}}$
 - (c) $(5.4 \times 10^{-4}) + (6.7 \times 10^{-5})$
 - (d) $(7.2 \times 10^7) (4.8 \times 10^6)$
 - (e) $(4.5 \times 10^3) \times (3.6 \times 10^{-4})$
 - (f) $(3.24 \times 10^{10})^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):
 - (a) $\frac{5}{7} + \frac{3}{14}$
 - (b) $\frac{7}{12} \frac{5}{18}$

 - (c) $\frac{8}{9} \times \frac{15}{16}$ (d) $\frac{9}{14} \div \frac{18}{35}$ (e) $\frac{7}{8} \frac{3}{10} + \frac{5}{20}$ (f) $(\frac{4}{7})^{-2}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{5}$
 - (b) $0.\overline{81}$
 - (c) $0.3\overline{4}$
 - (d) $0.\overline{571428}$
 - (e) $2.5\overline{7}$
 - (f) $0.62\overline{5}$
- 24. Work out these percentage calculations:
 - (a) Increase 480 by 35%
 - (b) Decrease 560 by 16%
 - (c) Find 22.5% of 720
 - (d) What percentage is 96 out of 120?
 - (e) If 55% of a number is 143, find the number
 - (f) A price increases from £75 to £87. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 40% increase, a price is £182. Find the original price
 - (b) After a 35% decrease, a quantity is 91. Find the original quantity
 - (c) The value of a car decreases by 30% each year. If it's worth £14700 now, what was it worth 2 years ago?
 - (d) An investment grows by 4% per year. After 2 years it's worth £2163.20. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $4^{-2} + 5^0 6^{-1}$
 - (b) $\sqrt{36} \times 125^{\frac{1}{3}} 4^{-2}$
 - (c) $\frac{216^{\frac{2}{3}}-256^{\frac{3}{4}}}{25^{\frac{1}{2}}}$
 - (d) $16^{-\frac{1}{2}} + 49^{\frac{1}{2}} \times 3^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{5}{\sqrt{5}} + \frac{4}{\sqrt{20}}$
 - (b) $\sqrt{24} \times \sqrt{54} \sqrt{96}$
 - (c) $\frac{\sqrt{98} + \sqrt{72}}{\sqrt{2}}$
 - (d) $(4\sqrt{3}-3)^2$
- 28. Work with standard form in context:
 - (a) The mass of a neutron is 1.675×10^{-27} kg. Find the mass of 6.02×10^{23} neutrons
 - (b) Radio waves travel at 3×10^8 m/s. How far do they travel in one day (use 1 day = 8.64×10^4 seconds)?
 - (c) The width of a virus is approximately 5×10^{-8} m. How many viruses would fit across a distance of 2 mm?
 - (d) A quantum computer processes 4.8×10^{11} operations per second. How many operations in 12 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{5}$ is irrational. (Use proof by contradiction: assume $\sqrt{5} = \frac{r}{s}$ where r and s are integers with no common factors)
- 30. The number α satisfies $\alpha^2 = 2\alpha + 1$.
 - (a) Show that $\alpha = 1 + \sqrt{2}$
 - (b) Calculate α to 4 decimal places
 - (c) Find $\frac{1}{\alpha}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{2}+\sqrt{6}+\sqrt{8}}$. (Hint: First rationalize using $(\sqrt{2}+\sqrt{6})-\sqrt{8}$)
- 32. A rectangle has sides of length $(4+\sqrt{3})$ cm and $(4-\sqrt{3})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of yeast quadruples every 5 hours. If there are initially 6×10^2 yeast cells:
 - (a) How many yeast cells after 20 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 3×10^7 yeast cells?
- 34. Show that $\frac{1}{\sqrt{r}+\sqrt{s}} + \frac{1}{\sqrt{r}-\sqrt{s}} = \frac{2\sqrt{r}}{r-s}$

- 35. A cylinder has volume $V = \pi r^2 h$. If the volume is 432π cm³ and h = 12 cm:
 - (a) Find the radius in surd form
 - (b) Find the surface area (use $A = 2\pi r^2 + 2\pi rh$)
 - (c) Express both answers exactly
- 36. The equation $x^2 8x + 1 = 0$ has solutions $x = 4 \pm \sqrt{15}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{4+\sqrt{15}} + \frac{1}{4-\sqrt{15}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$