GCSE Higher Mathematics Practice Test 3: Algebra

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Linear and Simultaneous Equations

1. Solve these linear equations:

(a)
$$5(2x-3) = 3x + 11$$

(b)
$$\frac{x+4}{5} - \frac{x-3}{2} = 1$$

(c)
$$\frac{4x-3}{6} = \frac{x+2}{4} - 2$$

(d)
$$0.5x + 0.9 = 0.2x - 0.6$$

2. Solve these simultaneous equations by elimination:

(a)
$$\begin{cases} 4x + 3y = 22 \\ 2x - 5y = -8 \end{cases}$$

(b)
$$\begin{cases} 3x + 7y = 29 \\ 5x - 2y = 8 \end{cases}$$

(b)
$$\begin{cases} 3x + 7y = 29 \\ 5x - 2y = 8 \end{cases}$$
(c)
$$\begin{cases} 5x + 2y = 21 \\ 3x - 4y = 5 \end{cases}$$

(d)
$$\begin{cases} 6x + 5y = 32\\ 4x - 3y = 6 \end{cases}$$

3. Solve these simultaneous equations by substitution:

(a)
$$\begin{cases} y = 4x - 5 \\ 3x + 2y = 1 \end{cases}$$

(a)
$$\begin{cases} y = 4x - 5\\ 3x + 2y = 19 \end{cases}$$
(b)
$$\begin{cases} x = 2y + 3\\ 4x - 3y = 23 \end{cases}$$

(c)
$$\begin{cases} y = 9 - 2x \\ 3x + 5y = 37 \end{cases}$$

4. Find the graphical solution to these simultaneous equations by finding intersection points:

1

(a)
$$y = 4x + 2$$
 and $y = 10 - x$

(b)
$$y = x^2 - 5$$
 and $y = 2x + 3$

(c)
$$x^2 + y^2 = 20$$
 and $y = x + 2$

Section B: Quadratic Equations - Factoring

- 5. Factorize these quadratic expressions:
 - (a) $x^2 + 11x + 18$
 - (b) $x^2 9x 22$
 - (c) $x^2 13x + 36$
 - (d) $x^2 + 4x 21$
 - (e) $x^2 64$
 - (f) $x^2 16x + 64$
- 6. Solve these quadratic equations by factorizing:
 - (a) $x^2 + 11x + 28 = 0$
 - (b) $x^2 10x 11 = 0$
 - (c) $x^2 7x = 0$
 - (d) $x^2 81 = 0$
 - (e) $x^2 + 18x + 81 = 0$
 - (f) $4x^2 16x = 0$
- 7. Factorize these harder quadratics:
 - (a) $2x^2 + 9x + 7$
 - (b) $4x^2 13x + 3$
 - (c) $25x^2 36$
 - (d) $3x^2 + 14x 24$
 - (e) $25x^2 30x + 9$
 - (f) $7x^2 19x 6$
- 8. Solve by factorizing:
 - (a) $4x^2 + 9x 9 = 0$
 - (b) $5x^2 11x + 2 = 0$
 - (c) $16x^2 9 = 0$
 - (d) $3x^2 + 10x 8 = 0$

Section C: Completing the Square and Quadratic Formula

- 9. Complete the square for these expressions:
 - (a) $x^2 + 10x + 9$
 - (b) $x^2 4x + 1$
 - (c) $x^2 + 6x 3$
 - (d) $x^2 14x + 11$
 - (e) $2x^2 + 16x + 7$
 - (f) $4x^2 12x + 1$
- 10. Solve by completing the square:
 - (a) $x^2 + 10x + 7 = 0$
 - (b) $x^2 8x 1 = 0$

- (c) $x^2 + 2x 4 = 0$
- (d) $2x^2 + 8x 3 = 0$
- 11. Use the quadratic formula to solve (leave in surd form where appropriate):
 - (a) $x^2 + 7x 3 = 0$
 - (b) $4x^2 9x + 3 = 0$
 - (c) $x^2 10x + 5 = 0$
 - (d) $3x^2 + 5x 3 = 0$
 - (e) $2x^2 + 9x + 7 = 0$
 - (f) $6x^2 7x 2 = 0$
- 12. Find the discriminant and state the nature of the roots:
 - (a) $x^2 + 9x + 14 = 0$
 - (b) $x^2 8x + 16 = 0$
 - (c) $x^2 + 4x + 9 = 0$
 - (d) $2x^2 7x + 3 = 0$

Section D: Quadratic Graphs and Applications

- 13. For the quadratic $y = x^2 8x + 12$:
 - (a) Find the y-intercept
 - (b) Find the x-intercepts by factorizing
 - (c) Complete the square to find the vertex
 - (d) Sketch the graph
 - (e) State the line of symmetry
- 14. For the quadratic $y = 2x^2 + 8x 3$:
 - (a) Complete the square
 - (b) Find the coordinates of the vertex
 - (c) Find the y-intercept
 - (d) State the line of symmetry
 - (e) Sketch the graph
- 15. A football is kicked upward. Its height h (in meters) after t seconds is given by: $h = -5t^2 + 25t + 1$
 - (a) What is the initial height?
 - (b) At what times is the football at ground level?
 - (c) What is the maximum height reached?
 - (d) At what time does it reach maximum height?
- 16. The cost C (in thousands of pounds) for producing x thousand widgets is: $C = x^2 14x + 60$
 - (a) How many widgets should be produced to minimize cost?
 - (b) What is the minimum cost?
 - (c) At what production levels is the cost £11,000?

Section E: Linear Inequalities

- 17. Solve these linear inequalities:
 - (a) 5x + 9 > 29
 - (b) $4x 11 \le 17$
 - (c) 8 5x < 3
 - (d) $\frac{x+1}{4} \ge 3$
 - (e) 6 5x > 4x + 15
 - (f) $\frac{4x-3}{5} < \frac{x+6}{2}$
- 18. Show these inequalities on number lines:
 - (a) x > -4
 - (b) $x \le 6$
 - (c) $-1 < x \le 7$
 - (d) x < 3 or x > 8
- 19. Solve these compound inequalities:
 - (a) -6 < 4x + 2 < 10
 - (b) 7 < 3x 2 < 16
 - (c) $-1 \le \frac{4x+3}{5} < 7$
- 20. Find the integer solutions to:
 - (a) 4x + 5 > 13 and x < 7
 - (b) $-1 \le x + 4 < 6$
 - (c) $x^2 < 36$

Section F: Quadratic Inequalities

- 21. Solve these quadratic inequalities:
 - (a) $x^2 9x + 14 > 0$
 - (b) $x^2 10x + 21 < 0$
 - (c) $x^2 25 < 0$
 - (d) $x^2 + 4x 12 \ge 0$
 - (e) $x^2 10x + 25 > 0$
 - (f) $2x^2 3x 2 < 0$
- 22. Solve and show on number lines:
 - (a) $x^2 36 \le 0$
 - (b) $x^2 + 3x 10 > 0$
 - (c) $3x^2 8x + 4 \ge 0$
- 23. Find the values of x for which:
 - (a) $x^2 < 5x + 6$
 - (b) $2x^2 + 5x \ge 3$
 - (c) $x^2 + 8x + 16 \le 0$

Section G: Algebraic Manipulation

- 24. Expand and simplify:
 - (a) (x+6)(4x-3)
 - (b) (3x-4)(x+7)
 - (c) $(2x+7)^2$
 - (d) $(6x-1)^2$
 - (e) (x+9)(x-9)
 - (f) (5x+2)(5x-2)
- 25. Expand these expressions:
 - (a) $(x+4)(x^2-3x+5)$
 - (b) $(2x-3)(x^2+2x-1)$
 - (c) $(x+3)^3$
 - (d) $(2x-5)^3$
- 26. Factorize completely:
 - (a) $10x^2 + 15x$
 - (b) $16x^2 49$
 - (c) $x^3 9x$
 - (d) $4x^3 + 16x^2 + 16x$
 - (e) $x^3 125$
 - (f) $64x^3 + 27$
- 27. Simplify these algebraic fractions:

 - (b) $\frac{x^2+9x+20}{x+5}$ (c) $\frac{5x^2-20}{x^2-4}$

 - (d) $\frac{x^3-125}{x^2-25}$

Section H: Algebraic Fractions and Advanced Topics

- 28. Add and subtract these algebraic fractions:
 - (a) $\frac{5}{x} + \frac{2}{x}$
 - (b) $\frac{8}{x} \frac{5}{x}$
 - (c) $\frac{3}{4x} + \frac{1}{8x}$
 - (d) $\frac{4}{x+1} + \frac{3}{x-2}$
 - (e) $\frac{x}{x+4} \frac{3}{x-1}$
 - (f) $\frac{4x}{x^2-9} + \frac{3}{x+3}$
- 29. Multiply and divide these algebraic fractions:
 - (a) $\frac{x}{5} \times \frac{15}{x^2}$
 - (b) $\frac{x+4}{6} \times \frac{12}{x+4}$
 - (c) $\frac{x^2-16}{x+3} \div \frac{x-4}{x+3}$

(d)
$$\frac{4x+12}{x^2-25} \times \frac{x-5}{8}$$

- 30. Solve these equations involving algebraic fractions:
 - (a) $\frac{x}{5} + \frac{x}{2} = 21$
 - (b) $\frac{4x+3}{6} = \frac{x-2}{4}$
 - (c) $\frac{5}{x} = \frac{4}{x-3}$
 - (d) $\frac{x+3}{x-4} = \frac{2x}{x+3}$
- 31. Make the subject of these formulae:
 - (a) $E = mc^2$, make c the subject
 - (b) $S = \frac{n}{2}(2a + (n-1)d)$, make d the subject
 - (c) $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, make v the subject
 - (d) $T = 2\pi \sqrt{\frac{l}{g}}$, make l the subject

Section I: Sequences

- 32. Find the nth term for these arithmetic sequences:
 - (a) 11, 17, 23, 29, ...
 - (b) $6, 13, 20, 27, \dots$
 - (c) 35, 31, 27, 23, ...
 - (d) $\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \dots$
- 33. For these geometric sequences, find the nth term:
 - (a) 4, 12, 36, 108, ...
 - (b) 7, 28, 112, 448, ...
 - (c) $128, 64, 32, 16, \dots$
 - (d) $3, -12, 48, -192, \dots$
- 34. Find the sum of these series:
 - (a) First 30 terms of 8 + 12 + 16 + 20 + ...
 - (b) First 7 terms of 6 + 18 + 54 + 162 + ...
 - (c) 3 + 7 + 11 + ... + 99 (arithmetic series)
 - (d) 4 + 8 + 16 + ... + 256 (geometric series)
- 35. These are quadratic sequences. Find the nth term:
 - (a) $4, 16, 36, 64, 100, \dots$
 - (b) $3, 11, 25, 45, 71, \dots$
 - (c) $2, 8, 18, 32, 50, \dots$
 - (d) $6, 17, 34, 57, 86, \dots$
- 36. A sequence is defined by $u_1 = 5$ and $u_{n+1} = 2u_n + 3$.
 - (a) Find the first 5 terms
 - (b) Find a formula for u_n
 - (c) Calculate u_7

Section J: Problem Solving

- 37. The sum of two numbers is 22 and their product is 112. Find the two numbers.
- 38. A rectangular pool has perimeter 48m. If the length is 10m more than the width, find the dimensions.
- 39. The difference between a positive number and its reciprocal is $\frac{15}{4}$. Find the number.
- 40. A cannon ball's height h (in meters) after t seconds is given by: $h = 100t 5t^2$
 - (a) When does it hit the ground?
 - (b) What is its maximum height?
 - (c) When is it 480m high?
- 41. Prove that the sum of the first n terms of the sequence $1, 3, 5, 7, \dots$ is n^2 .
- 42. The quadratic $ax^2 + bx + c = 0$ has roots p and q.
 - (a) Show that $p + q = -\frac{b}{a}$
 - (b) Show that $pq = \frac{c}{a}$
 - (c) If the roots are 5 and -3, find a, b, and c when a=2
- 43. A function is defined as $h(x) = x^2 + kx + l$. If h(1) = 6 and h(3) = 18, find k and l.
- 44. The sum of the first n terms of a sequence is $S_n = 4n^2 n$. Find the nth term of the sequence.

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$