GCSE Higher Mathematics Practice Test 9: Probability

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 90 minutes

Section A: Conditional Probability Fundamentals

- 1. A survey of 320 students shows:
 - 195 study Biology
 - 168 study Chemistry
 - 97 study both Biology and Chemistry
 - (a) Draw a Venn diagram
 - (b) Find P(studies Biology studies Chemistry)
 - (c) Find P(studies Chemistry studies Biology)
 - (d) Find P(studies exactly one subject)
 - (e) Are studying Biology and Chemistry independent? Justify your answer
- 2. A jar contains 18 orange balls and 12 purple balls. Two balls are drawn without replacement.
 - (a) Find P(second ball is orange first ball is orange)
 - (b) Find P(second ball is purple first ball is orange)
 - (c) Find P(both balls are the same color)
 - (d) Find P(balls are different colors)
 - (e) Verify that your probabilities sum to 1
- 3. Events A and B are such that:
 - P(A) = 0.67
 - P(B) = 0.38
 - P(A B) = 0.29

Calculate:

- (a) P(A B)
- (b) P(A')
- (c) P(A B)
- (d) P(B A)

- (e) P(A' B')
- (f) P(A B')
- 4. A card is drawn from a standard 52-card deck. Let A = "card is even numbered" (2, 4, 6, 8, 10) and B = "card is a King".
 - (a) Find P(A), P(B), and P(A B)
 - (b) Calculate P(A B)
 - (c) Calculate P(B A)
 - (d) Are events A and B independent? Show your working
 - (e) Find P(A' B')

Section B: Tree Diagrams and Sequential Events

- 5. A bag contains 17 blue counters and 13 yellow counters. A counter is drawn, its color noted, and then replaced. This process is repeated twice more.
 - (a) Draw a tree diagram for all three draws
 - (b) Find P(all three counters are blue)
 - (c) Find P(exactly two counters are yellow)
 - (d) Find P(at least one counter is blue)
 - (e) Find P(first counter is yellow exactly two are yellow)
- 6. Box A contains 7 green balls and 3 orange balls. Box B contains 4 green balls and 8 orange balls. A fair die is rolled; if it shows 1 or 2, Box A is chosen, otherwise Box B is chosen. Then a ball is drawn.
 - (a) Draw a tree diagram
 - (b) Find P(green ball)
 - (c) Find P(orange ball)
 - (d) Given a green ball was drawn, find P(it came from Box A)
 - (e) Given an orange ball was drawn, find P(it came from Box B)
- 7. Three factories produce widgets with different defect rates:
 - Factory A: produces 45% of widgets, 4% defective
 - Factory B: produces 33% of widgets, 9% defective
 - Factory C: produces 22% of widgets, 14% defective
 - (a) Find the overall probability of a defective widget
 - (b) If a widget is defective, find the probability it came from Factory A
 - (c) If a widget is defective, find the probability it came from Factory C
 - (d) If a widget is not defective, which factory most likely produced it?
- 8. A student takes three exams. The probability of passing each exam is 0.78, and the exams are independent.
 - (a) Find P(passes all three exams)
 - (b) Find P(fails all three exams)
 - (c) Find P(passes exactly two exams)
 - (d) Find P(passes at least one exam)
 - (e) Given the student passed at least two exams, find P(passed all three)

Section C: Bayes' Theorem Applications

- 9. A diagnostic test for a disease has the following characteristics:
 - If a person has the disease, the test is positive 85% of the time
 - If a person doesn't have the disease, the test is negative 91% of the time
 - 1.7% of the population has the disease
 - (a) Find P(positive test)
 - (b) If someone tests positive, find P(they have the disease)
 - (c) If someone tests negative, find P(they don't have the disease)
 - (d) Comment on the reliability of a positive test result
 - (e) How would the results change if 17% of the population had the disease?
- 10. An alarm system has three detectors. The probability each detector activates during a break-in is:
 - Detector A: 0.91
 - Detector B: 0.86
 - Detector C: 0.95

The detectors operate independently.

- (a) Find P(all three detectors activate during a break-in)
- (b) Find P(at least one detector activates during a break-in)
- (c) Find P(exactly two detectors activate during a break-in)
- (d) If exactly two detectors activate, find P(Detector B failed)
- (e) Which single detector is most reliable?
- 11. A company manufactures products using two methods. Method A is used 68% of the time and produces 6% defective products. Method B is used 32% of the time and produces 17% defective products.
 - (a) A random product is selected and found to be defective. Use Bayes' theorem to find P(produced by Method A)
 - (b) If 800 products are manufactured, how many would you expect to be defective?
 - (c) How many of the defective products would come from each method?
 - (d) To reduce overall defect rate to 5%, what should Method B's defect rate be?
- 12. Three spam filters work independently to classify emails:
 - Filter A: 76% accurate for spam, 94% accurate for legitimate emails
 - Filter B: 87% accurate for spam, 89% accurate for legitimate emails
 - Filter C: 82% accurate for spam, 92% accurate for legitimate emails

Historically, 38% of emails are spam.

- (a) If All three filters classify an email as spam, find P(it actually is spam)
- (b) If Filter A classifies as spam but Filters B and C classify as legitimate, find P(it's spam)
- (c) Which filter would you trust most for identifying spam?
- (d) Which filter would you trust most for identifying legitimate emails?

Section D: Introduction to Binomial Distribution

- 13. A biased coin shows heads with probability 0.4. The coin is flipped 18 times.
 - (a) Find P(exactly 8 heads)
 - (b) Find P(at most 6 heads)
 - (c) Find P(at least 10 heads)
 - (d) Find the expected number of heads
 - (e) Find the most likely number of heads
 - (f) Calculate the variance of the number of heads
- 14. A quiz has 24 questions, each with 4 possible answers. A student guesses randomly on all questions.
 - (a) State the distribution of the number of correct answers
 - (b) Find P(exactly 8 correct answers)
 - (c) Find P(more than 10 correct answers)
 - (d) Find the expected number of correct answers
 - (e) Find P(passes the quiz) if the pass mark is 40%
 - (f) Calculate the standard deviation of correct answers
- 15. The probability that a light bulb lasts more than 1000 hours is 0.73. A box contains 20 light bulbs.
 - (a) Find P(all bulbs last more than 1000 hours)
 - (b) Find P(exactly 16 bulbs last more than 1000 hours)
 - (c) Find P(fewer than 12 bulbs last more than 1000 hours)
 - (d) How many bulbs would you expect to last more than 1000 hours?
 - (e) Find P(at least 80% of bulbs last more than 1000 hours)
 - (f) What's the most likely number of bulbs to last more than 1000 hours?
- 16. A production line produces 12% defective components. Quality control inspects 40 components.
 - (a) Find P(no defective components in the sample)
 - (b) Find P(exactly 5 defective components)
 - (c) Find P(more than 8 defective components)
 - (d) Calculate the expected number of defective components
 - (e) Find P(defect rate in sample exceeds 18%)
 - (f) Calculate the probability that the sample defect rate is between 8% and 16%

Section E: Advanced Binomial Applications

- 17. A tennis player wins 76% of their serves. In a match, they serve 42 times.
 - (a) Model this situation and state any assumptions
 - (b) Find P(wins at least 35 serves)
 - (c) Find P(wins between 30 and 35 serves inclusive)
 - (d) Calculate the expected number of successful serves
 - (e) Find the probability their success rate in this match is above 85%
 - (f) What's the minimum number of serves needed for P(at least 1 success) 0.999999999?

- 18. A quality inspector examines 38 products per shift. The probability any product is faulty is 0.14.
 - (a) Find P(finds exactly 6 faulty products in one shift)
 - (b) Find P(finds no faulty products in one shift)
 - (c) Over a 6-shift week, find the expected number of faulty products found
 - (d) In what percentage of shifts would you expect to find more than 8 faulty products?
 - (e) If the inspector finds 11 faulty products in one shift, comment on whether this is unusual
- 19. A tech company claims their app crashes for only 8% of users. A test involves 29 users.
 - (a) If the claim is true, find P(app crashes for exactly 3 users)
 - (b) Find P(app crashes for at most 4 users)
 - (c) Calculate the expected number of users experiencing crashes
 - (d) If the app crashes for 7 users, test whether this supports the company's claim
 - (e) What's the maximum number of crashes that would support the 8% claim at 5% significance?
- 20. A poll shows 63% of voters favor a candidate. A random sample of 36 voters is surveyed.
 - (a) Find P(exactly 22 voters favor the candidate)
 - (b) Find P(fewer than 18 voters favor the candidate)
 - (c) Calculate the expected number of supporters
 - (d) Find P(between 55% and 75% of the sample favor the candidate)
 - (e) If 27 voters in the sample favor the candidate, is this significantly different from expected?

Section F: Combined Probability Scenarios

- 21. An electronics store has two suppliers. Supplier A provides 65% of devices with 7% defect rate. Supplier B provides 35% of devices with 18% defect rate.
 - (a) A customer buys 28 devices. Find P(exactly 3 are defective)
 - (b) If a customer returns a defective device, find P(it came from Supplier B)
 - (c) A shipment of 420 devices arrives. Find the expected number from each supplier
 - (d) Calculate the overall defect rate
 - (e) If the store wants to reduce defects to 6%, what should Supplier B's rate be?
- 22. A lottery game involves selecting 8 cards from a deck of 36 cards without replacement. The player wins if all 8 cards are hearts (9 hearts in the deck).
 - (a) Calculate P(all 8 cards are hearts)
 - (b) Calculate P(all 8 cards are the same suit) if there are 9 cards of each suit
 - (c) If 8000 people play this game, how many would you expect to win?
 - (d) What should be the payout ratio for this to be a fair game?
 - (e) How does the probability change if cards are replaced after each draw?
- 23. A satellite communication system uses 12 independent transponders. Each transponder has probability 0.89 of successful operation.
 - (a) Find P(all transponders operate successfully)
 - (b) Find P(exactly one transponder fails)

- (c) The system functions if at least 10 transponders work. Find P(system functions)
- (d) If the system handles 150 transmissions, find P(fewer than 135 are successful)
- (e) What should be the individual transponder reliability for 99.99% system reliability?
- 24. A medical clinic treats patients with a condition that occurs in 26% of cases. During one day, 45 patients are treated.
 - (a) Model the number of patients with the condition and state assumptions
 - (b) Find P(exactly 11 patients have the condition)
 - (c) Find P(no patients have the condition)
 - (d) Find P(more than 15 patients have the condition)
 - (e) Calculate the expected number of patients with the condition
 - (f) If 19 patients have the condition in one day, is this unusually high?

Section G: Advanced Problem Solving

- 25. A rare genetic condition affects 1 in 650 births. A prenatal test is 87% accurate for positive cases and 99.4% accurate for negative cases.
 - (a) Calculate the probability of testing positive
 - (b) If a test is positive, what's the probability the baby has the condition?
 - (c) How many false positives occur per 65,000 births?
 - (d) Design a two-stage testing procedure to reduce false positives
 - (e) Comment on the ethical implications of these probabilities
- 26. A cybersecurity firm develops malware detection software. The software correctly identifies 74% of malware but also flags 11% of safe files as potentially malicious. 42% of scanned files contain malware.
 - (a) If a file is flagged, find P(it actually contains malware)
 - (b) If a file passes scanning, find P(it's actually safe)
 - (c) In scanning 800 files, how many false alarms would you expect?
 - (d) Suggest improvements to the detection algorithm
 - (e) Calculate the overall accuracy of the detection system
- 27. A raffle has the following structure: pick 5 numbers from 1-35. You win if all 5 match.
 - (a) Calculate P(winning the raffle)
 - (b) Find P(matching exactly 4 numbers)
 - (c) Find P(matching exactly 3 numbers)
 - (d) If 18 million tickets are sold, find P(no one wins)
 - (e) Model the number of winners as a binomial distribution
- 28. An airport security system screens passengers. It correctly identifies 79% of security threats and incorrectly flags 6% of innocent passengers. On average, 0.3% of passengers pose security threats.
 - (a) Find the probability of triggering an alarm
 - (b) If an alarm triggers, find P(it's a real threat)
 - (c) In screening 2,200,000 passengers, how many false alarms occur?

- (d) Design a cost-benefit analysis for this system
- (e) How would increasing the detection rate to 84% affect false alarms?
- 29. Design and analyze a probability model for evaluating online review authenticity:
 - (a) Define the scenario and identify variables for detecting fake reviews
 - (b) State all assumptions about review patterns and detection methods
 - (c) Choose appropriate probability distributions for modeling
 - (d) Calculate probabilities for different detection scenarios
 - (e) Discuss limitations and potential improvements to your model
 - (f) Consider practical applications for e-commerce platforms

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepupmaths.co.uk