GCSE Higher Mathematics Practice Test 9: Algebra

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

Section A: Linear and Simultaneous Equations

1. Solve these linear equations:

(a)
$$11(x-9) = 7x + 19$$

(b)
$$\frac{x+17}{8} - \frac{x-15}{6} = 7$$

(b)
$$\frac{x+17}{8} - \frac{x-15}{6} = 7$$

(c) $\frac{10x-9}{20} = \frac{7x+8}{15} - 5$

(d)
$$1.2x + 2.4 = 1.0x - 5.6$$

2. Solve these simultaneous equations by elimination:

(a)
$$\begin{cases} 10x + 9y = 61 \\ 8x - 7y = 18 \end{cases}$$

(b)
$$\begin{cases} 7x + 15y = 55\\ 11x - 8y = 35 \end{cases}$$
(c)
$$\begin{cases} 10x + 7y = 44\\ 8x - 11y = 29 \end{cases}$$

(c)
$$\begin{cases} 10x + 7y = 44 \\ 8x - 11y = 29 \end{cases}$$

(d)
$$\begin{cases} 12x + 11y = 82 \\ 7x - 9y = 19 \end{cases}$$

3. Solve these simultaneous equations by substitution:

(a)
$$\begin{cases} y = 10x - 17 \\ 9x + 7y = 65 \end{cases}$$

(a)
$$\begin{cases} y = 10x - 17 \\ 9x + 7y = 65 \end{cases}$$
(b)
$$\begin{cases} x = 9y - 14 \\ 10x - 8y = 78 \end{cases}$$

(c)
$$\begin{cases} y = 21 - 9x \\ 8x + 11y = 104 \end{cases}$$

4. Find the graphical solution to these simultaneous equations by finding intersection points:

1

(a)
$$y = 10x - 8$$
 and $y = 22 - 7x$

(b)
$$y = x^2 - 17$$
 and $y = 8x + 7$

(c)
$$x^2 + y^2 = 50$$
 and $y = 8x - 6$

Section B: Quadratic Equations - Factoring

- 5. Factorize these quadratic expressions:
 - (a) $x^2 + 23x + 60$
 - (b) $x^2 21x 46$
 - (c) $x^2 25x + 126$
 - (d) $x^2 + 10x 39$
 - (e) $x^2 400$
 - (f) $x^2 40x + 400$
- 6. Solve these quadratic equations by factorizing:
 - (a) $x^2 + 23x + 112 = 0$
 - (b) $x^2 22x 23 = 0$
 - (c) $x^2 19x = 0$
 - (d) $x^2 441 = 0$
 - (e) $x^2 + 42x + 441 = 0$
 - (f) $10x^2 40x = 0$
- 7. Factorize these harder quadratics:
 - (a) $8x^2 + 17x + 9$
 - (b) $10x^2 27x + 9$
 - (c) $121x^2 144$
 - (d) $9x^2 + 20x 44$
 - (e) $121x^2 220x + 100$
 - (f) $13x^2 33x 18$
- 8. Solve by factorizing:
 - (a) $10x^2 + 21x 11 = 0$
 - (b) $11x^2 23x + 10 = 0$
 - (c) $100x^2 81 = 0$
 - (d) $8x^2 + 19x 15 = 0$

Section C: Completing the Square and Quadratic Formula

- 9. Complete the square for these expressions:
 - (a) $x^2 + 22x + 21$
 - (b) $x^2 26x + 13$
 - (c) $x^2 + 18x 15$
 - (d) $x^2 26x + 23$
 - (e) $10x^2 + 40x + 19$
 - (f) $6x^2 48x + 23$
- 10. Solve by completing the square:
 - (a) $x^2 + 22x + 19 = 0$
 - (b) $x^2 20x 13 = 0$

- (c) $x^2 + 16x 11 = 0$
- (d) $10x^2 + 20x 13 = 0$
- 11. Use the quadratic formula to solve (leave in surd form where appropriate):
 - (a) $x^2 + 19x 9 = 0$
 - (b) $10x^2 21x + 9 = 0$
 - (c) $x^2 22x + 17 = 0$
 - (d) $9x^2 + 17x 10 = 0$
 - (e) $8x^2 + 17x + 7 = 0$
 - (f) $12x^2 19x 7 = 0$
- 12. Find the discriminant and state the nature of the roots:
 - (a) $x^2 + 21x + 54 = 0$
 - (b) $x^2 20x + 100 = 0$
 - (c) $x^2 + 10x + 27 = 0$
 - (d) $9x^2 19x + 10 = 0$

Section D: Quadratic Graphs and Applications

- 13. For the quadratic $y = x^2 20x + 75$:
 - (a) Find the y-intercept
 - (b) Find the x-intercepts by factorizing
 - (c) Complete the square to find the vertex
 - (d) Sketch the graph
 - (e) State the line of symmetry
- 14. For the quadratic $y = 9x^2 + 27x 13$:
 - (a) Complete the square
 - (b) Find the coordinates of the vertex
 - (c) Find the y-intercept
 - (d) State the line of symmetry
 - (e) Sketch the graph
- 15. A discus is thrown upward. Its height h (in meters) after t seconds is given by: $h = -5t^2 + 80t + 11$
 - (a) What is the initial height?
 - (b) At what times is the discus at ground level?
 - (c) What is the maximum height reached?
 - (d) At what time does it reach maximum height?
- 16. The revenue R (in thousands of pounds) from manufacturing x thousand gadgets is: $R = -7x^2 + 35x 32$
 - (a) How many gadgets should be manufactured to maximize revenue?
 - (b) What is the maximum revenue?
 - (c) At what production levels is the revenue £6,000?

Section E: Linear Inequalities

- 17. Solve these linear inequalities:
 - (a) 11x + 21 > 65
 - (b) $10x 23 \le 47$
 - (c) 14 11x < 3
 - (d) $\frac{x+15}{8} \ge 1$
 - (e) 12 11x > 10x + 33
 - (f) $\frac{10x-9}{11} < \frac{x+12}{8}$
- 18. Show these inequalities on number lines:
 - (a) x > -10
 - (b) $x \le 12$
 - (c) $-7 < x \le 13$
 - (d) x < 9 or x > 14
- 19. Solve these compound inequalities:
 - (a) -12 < 10x + 8 < 28
 - (b) $19 \le 9x 8 \le 46$
 - (c) $-7 \le \frac{10x+8}{8} < 14$
- 20. Find the integer solutions to:
 - (a) 10x + 17 > 37 and x < 13
 - (b) $-8 \le x + 6 < 12$
 - (c) $x^2 < 144$

Section F: Quadratic Inequalities

- 21. Solve these quadratic inequalities:
 - (a) $x^2 21x + 54 > 0$
 - (b) $x^2 22x + 57 < 0$
 - (c) $x^2 289 < 0$
 - (d) $x^2 + 10x 24 \ge 0$
 - (e) $x^2 22x + 121 > 0$
 - (f) $8x^2 9x 14 < 0$
- 22. Solve and show on number lines:
 - (a) $x^2 324 \le 0$
 - (b) $x^2 + 9x 22 > 0$
 - (c) $7x^2 15x + 8 \ge 0$
- 23. Find the values of x for which:
 - (a) $x^2 < 11x + 12$
 - (b) $8x^2 + 17x \ge 21$
 - (c) $x^2 + 20x + 100 \le 0$

Section G: Algebraic Manipulation

- 24. Expand and simplify:
 - (a) (x+13)(10x-8)
 - (b) (9x-10)(x+14)
 - (c) $(8x+13)^2$
 - (d) $(12x 11)^2$
 - (e) (x+21)(x-21)
 - (f) (11x+10)(11x-10)
- 25. Expand these expressions:
 - (a) $(x+10)(x^2-9x+11)$
 - (b) $(8x-9)(x^2+8x-7)$
 - (c) $(x+9)^3$
 - (d) $(9x-7)^3$
- 26. Factorize completely:
 - (a) $22x^2 + 33x$
 - (b) $100x^2 361$
 - (c) $x^3 81x$
 - (d) $10x^3 + 40x^2 + 40x$
 - (e) $x^3 1331$
 - (f) $1000x^3 + 729$
- 27. Simplify these algebraic fractions:
 - (a) $\frac{x^2-100}{x+10}$
 - (b) $\frac{x^2 + 21x + 110}{x + 11}$ (c) $\frac{11x^2 44}{x^2 4}$

 - (d) $\frac{x^3-1331}{x^2-121}$

Section H: Algebraic Fractions and Advanced Topics

- 28. Add and subtract these algebraic fractions:
 - (a) $\frac{11}{x} + \frac{8}{x}$
 - (b) $\frac{15}{x} \frac{10}{x}$
 - (c) $\frac{8}{11x} + \frac{1}{22x}$ (d) $\frac{10}{x+8} + \frac{7}{x-9}$

 - (e) $\frac{x}{x+10} \frac{9}{x-7}$
 - (f) $\frac{10x}{x^2-81} + \frac{9}{x+9}$
- 29. Multiply and divide these algebraic fractions:

 - (a) $\frac{x}{11} \times \frac{33}{x^2}$ (b) $\frac{x+10}{12} \times \frac{24}{x+10}$
 - (c) $\frac{x^2-100}{x+9} \div \frac{x-10}{x+9}$

(d)
$$\frac{10x+30}{x^2-121} \times \frac{x-11}{20}$$

- 30. Solve these equations involving algebraic fractions:
 - (a) $\frac{x}{11} + \frac{x}{9} = 40$
 - (b) $\frac{10x+9}{12} = \frac{x-8}{9}$
 - (c) $\frac{11}{x} = \frac{10}{x-9}$
 - (d) $\frac{x+9}{x-10} = \frac{8x}{x+9}$
- 31. Make the subject of these formulae:
 - (a) $R = \frac{V}{I}$, make V the subject
 - (b) $A = \frac{\pi d^2}{4}$, make d the subject
 - (c) $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, make f the subject
 - (d) $E = \frac{1}{2}mv^2 + mgh$, make m the subject

Section I: Sequences

- 32. Find the nth term for these arithmetic sequences:
 - (a) $23, 29, 35, 41, \dots$
 - (b) 13, 20, 27, 34, ...
 - (c) $65, 61, 57, 53, \dots$
 - (d) $\frac{4}{9}$, $\frac{6}{9}$, $\frac{8}{9}$, $\frac{10}{9}$, ...
- 33. For these geometric sequences, find the nth term:
 - (a) $10, 30, 90, 270, \dots$
 - (b) 13, 52, 208, 832, ...
 - (c) $1024, 256, 64, 16, \dots$
 - (d) $9, -36, 144, -576, \dots$
- 34. Find the sum of these series:
 - (a) First 60 terms of 14 + 18 + 22 + 26 + ...
 - (b) First 1 term of 12 + 36 + 108 + 324 + ...
 - (c) 9 + 13 + 17 + ... + 105 (arithmetic series)
 - (d) 11 + 22 + 44 + ... + 704 (geometric series)
- 35. These are quadratic sequences. Find the nth term:
 - (a) $10, 40, 90, 160, 250, \dots$
 - (b) 9, 23, 43, 69, 101, ...
 - (c) $8, 32, 72, 128, 200, \dots$
 - (d) $12, 35, 64, 99, 140, \dots$
- 36. A sequence is defined by $u_1 = 10$ and $u_{n+1} = 8u_n 9$.
 - (a) Find the first 5 terms
 - (b) Find a formula for u_n
 - (c) Calculate u_1

Section J: Problem Solving

- 37. The sum of two numbers is 46 and their product is 525. Find the two numbers.
- 38. A rectangular arena has perimeter 104m. If the length is 22m more than the width, find the dimensions.
- 39. The difference between a positive number and its reciprocal is $\frac{120}{11}$. Find the number.
- 40. A javelin's height h (in meters) after t seconds is given by: $h = 220t 5t^2$
 - (a) When does it hit the ground?
 - (b) What is its maximum height?
 - (c) When is it 2275m high?
- 41. Prove that the sum of the first n terms of the sequence $7, 14, 21, 28, \dots$ is $\frac{7n(n+1)}{2}$.
- 42. The quadratic $ax^2 + bx + c = 0$ has roots ϕ and ψ .
 - (a) Show that $\phi + \psi = -\frac{b}{a}$
 - (b) Show that $\phi \psi = \frac{c}{a}$
 - (c) If the roots are 11 and -8, find a, b, and c when a=8
- 43. A function is defined as $q(x) = x^2 + rx + s$. If q(7) = 42 and q(9) = 68, find r and s.
- 44. The sum of the first n terms of a sequence is $S_n = 10n^2 7n$. Find the nth term of the sequence.

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$