A Level Pure Mathematics Practice Test 5: Sequences and Series

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Arithmetic Sequences

- 1. For the arithmetic sequence $13, 21, 29, 37, 45, \ldots$
 - (a) Find the first term a and common difference d
 - (b) Find the general term u_n
 - (c) Calculate u_{26}
 - (d) Find which term equals 189
 - (e) Determine if 250 is a term in the sequence
- 2. An arithmetic sequence has $u_7 = 41$ and $u_{13} = 71$.
 - (a) Find the first term and common difference
 - (b) Write the general term u_n
 - (c) Calculate u_{25}
 - (d) Find the first term to exceed 120
 - (e) Determine the largest value of n for which $u_n < 200$
- 3. The *n*th term of an arithmetic sequence is $u_n = 7n 4$.
 - (a) Write down the first five terms
 - (b) Find the common difference
 - (c) Calculate u_{38}
 - (d) Find the sum of the first 28 terms
 - (e) For what value of n is $u_n = 199$?
- 4. Three numbers r 5h, r, and r + 5h are in arithmetic progression with sum 72 and product 13824.
 - (a) Find the value of r
 - (b) Set up an equation for h
 - (c) Solve to find the values of h
 - (d) Write down the three numbers for each case
- 5. An arithmetic sequence has first term a and common difference d.

- (a) If the sum of the first m terms is k times the sum of the first n terms, prove that $\frac{m}{n} = \frac{k[2a + (n-1)d]}{2a + (m-1)d}$
- (b) Show that if the pth, qth, and rth terms are in geometric progression, then (q-r)a = (r-p-q+r)d
- (c) Prove that the sum of n terms can be written as $S_n = \frac{n}{2}(first\ term + last\ term)$
- (d) If $S_p = S_q$ where $p \neq q$, show that the (p+q)th term is zero when p+q is odd

Section B: Arithmetic Series

- 6. Calculate the sum of these arithmetic series:
 - (a) $10 + 17 + 24 + 31 + \dots$ (first 24 terms)
 - (b) $40 + 35 + 30 + 25 + \dots$ (first 16 terms)
 - (c) $\frac{3}{7} + \frac{5}{7} + 1 + \frac{9}{7} + \dots$ (first 28 terms)
 - (d) The series with first term 21, last term 147, and 19 terms
- 7. An arithmetic series has first term 13 and common difference 8.
 - (a) Find the sum of the first 22 terms
 - (b) Find the smallest value of n for which $S_n \geq 3000$
 - (c) If the sum of the first n terms is 2288, find n
 - (d) Express S_n in terms of n
- 8. The sum of the first n terms of an arithmetic series is $S_n = 5n^2 + 3n$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common difference
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 9. Find the sum of:
 - (a) All multiples of 11 between 100 and 1000
 - (b) All integers from 1 to 150 that are divisible by 8
 - (c) All even integers from 20 to 180
 - (d) The integers from 1 to 120 that are divisible by 3 or 7
- 10. An arithmetic series has $S_{16} = 552$ and $S_{24} = 1128$.
 - (a) Find the first term and common difference
 - (b) Calculate S_{35}
 - (c) Find the 20th term
 - (d) Determine when the sum first exceeds 4000

Section C: Geometric Sequences

- 11. For the geometric sequence 6, 24, 96, 384, 1536, . . .:
 - (a) Find the first term a and common ratio r
 - (b) Find the general term u_n
 - (c) Calculate u_{13}
 - (d) Find which term equals 6144
 - (e) Determine if 98304 is a term in the sequence
- 12. A geometric sequence has $u_6 = 96$ and $u_9 = 768$.
 - (a) Find the common ratio r
 - (b) Find the first term a
 - (c) Write the general term u_n
 - (d) Calculate u_{14}
 - (e) Find the first term to exceed 500000
- 13. The *n*th term of a geometric sequence is $u_n = 9 \times 3^{n-1}$.
 - (a) Write down the first five terms
 - (b) Find the common ratio
 - (c) Calculate u_{12}
 - (d) Find the sum of the first 8 terms
 - (e) For what value of n is $u_n = 6561$?
- 14. Three numbers $\frac{s}{t}$, s, and st are in geometric progression with sum 156 and product 2197.
 - (a) Find the value of s
 - (b) Set up an equation for t
 - (c) Solve to find the values of t
 - (d) Write down the three numbers for each case
- 15. A geometric sequence has first term a and common ratio r.
 - (a) If the product of the first n terms is P_n , prove that $P_n = a^n \cdot r^{0+1+2+...+(n-1)} = a^n \cdot r^{\frac{n(n-1)}{2}}$
 - (b) Show that if u_p , u_q , u_r are in arithmetic progression, then $\frac{1}{u_p}$, $\frac{1}{u_q}$, $\frac{1}{u_r}$ are in harmonic progression
 - (c) Prove that the sequence $\log u_1$, $\log u_2$, $\log u_3$, ... forms an arithmetic sequence
 - (d) If two geometric sequences have the same common ratio, show that their term-by-term products also form a geometric sequence

Section D: Geometric Series

- 16. Calculate the sum of these geometric series:
 - (a) $11 + 33 + 99 + 297 + \dots$ (first 12 terms)
 - (b) $4 16 + 64 256 + \dots$ (first 9 terms)
 - (c) $\frac{3}{7} + \frac{3}{21} + \frac{3}{63} + \frac{3}{189} + \dots$ (first 10 terms)
 - (d) $128 + 96 + 72 + 54 + \dots$ (first 16 terms)
- 17. A geometric series has first term 18 and common ratio $\frac{4}{9}$.

- (a) Find the sum of the first 25 terms
- (b) Find the smallest value of n for which $S_n \geq 32$
- (c) Calculate the sum to infinity
- (d) Find how many terms are needed for the sum to be within 0.001 of the sum to infinity
- 18. The sum of the first n terms of a geometric series is $S_n = 7(6^n 1)$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common ratio
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 19. Evaluate these infinite geometric series:
 - (a) $1 + \frac{3}{7} + \frac{9}{49} + \frac{27}{343} + \dots$
 - (b) $12 6 + 3 \frac{3}{2} + \dots$
 - (c) $\frac{9}{10} + \frac{9}{50} + \frac{9}{250} + \frac{9}{1250} + \dots$
 - (d) $0.5 + 0.05 + 0.005 + 0.0005 + \dots$
- 20. A geometric series has $S_7 = 254$ and $S_{14} = 16766$.
 - (a) Set up equations for the first term and common ratio
 - (b) Solve to find a and r
 - (c) Calculate S_{21}
 - (d) Find the sum to infinity (if it exists)
 - (e) Determine the first term to exceed 50000

Section E: Sigma Notation

- 21. Evaluate these sums:
 - (a) $\sum_{r=1}^{20} (6r+4)$
 - (b) $\sum_{r=1}^{40} (7r-6)$

 - (c) $\sum_{r=1}^{32} r^2$ (d) $\sum_{r=1}^{18} (5r^2 + 2r)$
- 22. Express these series using sigma notation:
 - (a) $12 + 19 + 26 + 33 + \ldots + 68$
 - (b) $8 + 40 + 200 + 1000 + \ldots + 25000$
 - (c) $3^3 + 5^3 + 7^3 + 9^3 + \ldots + 21^3$
 - (d) $\frac{1}{6} + \frac{1}{16} + \frac{1}{30} + \frac{1}{48} + \ldots + \frac{1}{120}$
- 23. Use the standard formulae to evaluate:
 - (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$: Find $\sum_{r=1}^{95} r$
 - (b) $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$: Find $\sum_{r=1}^{40} r^2$
 - (c) $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$: Find $\sum_{r=1}^{25} r^3$
 - (d) $\sum_{r=1}^{50} (6r^2 5r + 4)$

- 24. Simplify these expressions:
 - (a) $\sum_{r=1}^{n} (tr + v)$ in terms of t, v, and n
 - (b) $\sum_{r=1}^{n} (5r^2 3r + 1)$
 - (c) $\sum_{r=1}^{n} (4r+2)^2$
 - (d) $\sum_{r=1}^{n} r(5r+3)$
- 25. Prove these results:
 - (a) $\sum_{r=1}^{n} (6r 5) = n(3n 2)$
 - (b) $\sum_{r=1}^{n} r(r+5) = \frac{n(n+1)(n+14)}{3}$
 - (c) $\sum_{r=1}^{n} \frac{1}{(5r-4)(5r+1)} = \frac{n}{5n+1}$
 - (d) $\sum_{r=1}^{n} ((r+3)^2 (r+2)^2) = n(n+7)$

Section F: Binomial Expansion - Integer Powers

- 26. Expand using the binomial theorem:
 - (a) $(x+6)^6$
 - (b) $(6x-5)^4$
 - (c) $(5-4x)^5$
 - (d) $(5x + \frac{4}{x})^6$
- 27. Find the specified terms in these expansions:
 - (a) The coefficient of x^7 in $(6x+4)^{11}$
 - (b) The coefficient of x^9 in $(4x-3)^{12}$
 - (c) The constant term in $(x^6 + \frac{5}{r^4})^5$
 - (d) The coefficient of x^{-3} in $(6x^4 \frac{3}{x^2})^8$
- 28. Use the binomial theorem to evaluate:
 - (a) $(1.06)^7$ to 6 decimal places
 - (b) $(0.93)^6$ to 5 decimal places
 - (c) $(1.03)^9$ exactly
 - (d) 102^5 by writing it as $(100+2)^5$
- 29. In the expansion of $(1 + ex)^f$:
 - (a) The coefficient of x is 24 and the coefficient of x^2 is 252. Find e and f.
 - (b) Find the coefficient of x^3
 - (c) Write out the first four terms of the expansion
 - (d) For what values of x does the expansion converge?
- 30. The coefficient of x^k in the expansion of $(1+x)^f$ is $\binom{f}{k}$.
 - (a) Show that $\sum_{k=0}^{f} {f \choose k} \cdot 4^k = 5^f$
 - (b) Prove that $\binom{f}{0} \binom{f}{2} + \binom{f}{4} \binom{f}{6} + \ldots = 2^{f-1}$ when f is even
 - (c) Use Vandermonde's identity to show that $\binom{m}{0}\binom{n}{k} + \binom{m}{1}\binom{n}{k-1} + \ldots + \binom{m}{k}\binom{n}{0} = \binom{m+n}{k}$
 - (d) Show that $\sum_{k=0}^{f} {f \choose k} \cdot k \cdot 2^k = f \cdot 3^{f-1}$ for $f \ge 1$

Section G: Binomial Expansion - Non-Integer Powers

- 31. Expand these expressions up to and including the term in x^3 :
 - (a) $(1+x)^{4/5}$
 - (b) $(1-x)^{-5}$
 - (c) $(1+7x)^{2/3}$
 - (d) $(1-8x)^{-2/3}$
- 32. Find the first four terms in the expansion of:
 - (a) $(49+x)^{1/2}$
 - (b) $(36-x)^{-1/2}$
 - (c) $\frac{1}{(5+x)^5}$
 - (d) $\sqrt{25-6x}$
- 33. State the range of values of x for which these expansions are valid:
 - (a) $(1+7x)^{-1} = 1 7x + 49x^2 343x^3 + \dots$
 - (b) $(1-6x)^{1/2} = 1 3x \frac{9x^2}{2} 9x^3 \dots$
 - (c) $(8+x)^{-1} = \frac{1}{8} \frac{x}{64} + \frac{x^2}{512} \frac{x^3}{4096} + \dots$
 - (d) $\frac{1}{\sqrt{36-x}} = \frac{1}{6} + \frac{x}{432} + \frac{x^2}{15552} + \dots$
- 34. Use binomial expansions to find approximations:
 - (a) $\sqrt{1.10}$ to 5 decimal places
 - (b) $\frac{1}{\sqrt{0.84}}$ to 4 decimal places
 - (c) $(1.06)^{-6}$ to 6 decimal places
 - (d) $\sqrt[3]{1.15}$ to 5 decimal places
- 35. Find the coefficient of x^2 in the expansion of:
 - (a) $(1+x)^{4/5}(1-x)^{1/5}$
 - (b) $(1+6x)^{-1}(1+4x)^2$
 - $(c) \frac{1+4x}{\sqrt{1-x}}$
 - (d) $(1+3x-2x^2)(1+x)^{-5}$

Section H: Mixed Series and Advanced Topics

- 36. A sequence is defined by $u_1 = 6$ and $u_{n+1} = 5u_n 13$ for $n \ge 1$.
 - (a) Find the first five terms
 - (b) Prove by induction that $u_n = \frac{11 \times 5^{n-1} + 13}{4}$
 - (c) Calculate u_{20}
 - (d) Find the sum of the first 18 terms
- 37. The sequence $\{x_n\}$ satisfies $x_n = 6x_{n-1} 8x_{n-2}$ with $x_1 = 4$ and $x_2 = 12$.
 - (a) Find the first six terms
 - (b) Show that the characteristic equation is $r^2 6r + 8 = 0$
 - (c) Solve to find r = 4 and r = 2

- (d) Use the general solution $x_n = A \cdot 4^n + B \cdot 2^n$ to find A and B
- (e) Write the explicit formula for x_n
- 38. Consider the series $\sum_{r=1}^{\infty} \frac{3}{r(r+5)}$.
 - (a) Use partial fractions to show that $\frac{3}{r(r+5)} = \frac{3}{5} \left(\frac{1}{r} \frac{1}{r+5} \right)$
 - (b) Write out the first few terms and observe the telescoping pattern
 - (c) Find the sum of the first n terms
 - (d) Determine the sum to infinity
- 39. The Narayana sequence is defined by $N_1=1,\ N_2=1,\ {\rm and}\ N_n=N_{n-1}+N_{n-3}$ for $n\geq 4$ with $N_3=1.$
 - (a) Write down the first 16 terms
 - (b) Calculate the ratios $\frac{N_{n+1}}{N_n}$ for the first several terms
 - (c) Investigate the periodic behavior of these ratios
 - (d) Study the characteristic equation $x^3 x^2 1 = 0$ and its roots
- 40. A ball bounces with decreasing height. Each bounce reaches $\frac{5}{6}$ of the height of the previous bounce. The initial drop is from 12 meters.
 - (a) Find the height reached after the 20th bounce
 - (b) Calculate the total vertical distance traveled when the ball comes to rest
 - (c) Find the number of bounces needed for the height to fall below 1 meter
 - (d) If each bounce takes time proportional to the height, find the ratio of total time to initial drop time

Section I: Applications and Problem Solving

- 41. A student loan of £45,000 is taken out at 6.5% annual compound interest. Annual payments of £6000 are made.
 - (a) Set up a recurrence relation for the amount owed after n years
 - (b) Find the amount owed after 8 years
 - (c) Determine how many years it takes to pay off the loan
 - (d) Calculate the total interest paid over the life of the loan
- 42. A rumor spreads through a school. Each person tells the rumor to 5 others every day. Initially, 3 people know the rumor.
 - (a) Model the number of people who know the rumor each day as a geometric sequence
 - (b) Find the number of people who know the rumor after 6 days
 - (c) After how many days will more than 10,000 people know the rumor?
 - (d) If the school has 2000 students and the spread rate decreases after 70% know, model this change
- 43. A Koch snowflake fractal uses triangular segments with perimeters forming the sequence: 108, 36, 12, 4, $\frac{4}{3}$, ... cm.
 - (a) Find the total perimeter of all the triangular segments
 - (b) If each segment's area is proportional to the square of its perimeter with constant $\frac{1}{48}$, find the total area

- (c) If drawing costs £0.50 per cm of perimeter, find the total drawing cost
- (d) What percentage of the total perimeter is contributed by the first 3 iterations?
- 44. A cooling system maintains temperature by removing heat. Initially, the system contains 600 units of heat. Every hour, 15% is removed, and 50 units are added from external sources.
 - (a) Set up a recurrence relation for the heat units after n hours
 - (b) Find the heat units present after 20 hours
 - (c) Determine the long-term equilibrium heat level
 - (d) After how many hours is the heat level within 2% of the equilibrium?
- 45. A savings plan involves depositing £5000 in the first year, £5500 in the second year, £6050 in the third year, and so on (increasing by 10% each year) for 30 years.
 - (a) Model the annual deposits as a geometric sequence
 - (b) Find the total amount deposited over 30 years
 - (c) If each deposit earns 7.5% annual compound interest from when it's made, find the total value after 30 years
 - (d) Compare this with depositing £5000 annually at 7.5% compound interest for 30 years

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$