A Level Pure Mathematics Practice Test 4: Proof

Instructions:

Answer all questions. Show your working clearly. Calculators may NOT be used in this test.

Time allowed: 2 hours

Section A: Direct Proof

- 1. Prove that the product of an even integer and any integer is always even.
- 2. Prove that if n is an odd integer, then $n^2 1$ is even.
- 3. Prove that the square of any odd integer is of the form 8k + 1 for some integer k.
- 4. Prove that for any integer n, the expression $n^2 n$ is always even.
- 5. Given that a and b are rational numbers with $b \neq 0$, prove that $\frac{a}{b}$ is rational.
- 6. Prove that if $x \ge 0$ and $y \ge 0$, then $\sqrt{xy} \le \frac{x+y}{2}$ with equality if and only if x = y.
- 7. Prove that for any real numbers m and n, $(m+n)^2 \ge 4mn$ if and only if $m \ge 0$ and $n \ge 0$.
- 8. Prove that in any triangle, the longest side is opposite to the largest angle.
- 9. Let $p(x) = x^9 4x^7 + 2x^5 x^3 + 3x$. Prove that p is an odd function.
- 10. Prove that the function q(x) = 3x + 7 is strictly increasing on \mathbb{R} .

Section B: Proof by Contradiction

- 11. Prove that $\sqrt{13}$ is irrational.
- 12. Prove that between any two consecutive integers, there is no integer.
- 13. Prove that $\sqrt{15}$ is irrational.
- 14. Prove that if n^2 is divisible by 5, then n is divisible by 5.
- 15. Prove that there is no rational number r such that $r^2 = 3$.
- 16. Prove that if a and b are integers with $a^2 + 3b^2 = 4$, then b = 0.
- 17. Prove that $\log_2 5$ is irrational.
- 18. Prove that the equation $2x^2 + 3x + 4 = 0$ has no real solutions.
- 19. Prove that the equation $3x^2 2y^2 = 5$ has no integer solutions.
- 20. Prove that if p is a prime number and $p \ge 5$, then $p^2 1$ is divisible by 24.

Section C: Mathematical Induction - Sequences and Series

- 21. Prove by induction that $6+12+18+\ldots+6n=3n(n+1)$ for all positive integers n.
- 22. Prove by induction that $1^4 + 2^4 + 3^4 + \ldots + n^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$ for all positive integers n.
- 23. Prove by induction that $4+9+14+\ldots+(5n-1)=\frac{n(5n+3)}{2}$ for all positive integers n.
- 24. Prove by induction that $7 + 14 + 21 + \ldots + 7n = \frac{7n(n+1)}{2}$ for all positive integers n.
- 25. Prove by induction that $1+6+11+\ldots+(5n-4)=\frac{n(5n-3)}{2}$ for all positive integers n.
- 26. Let $s_1 = 5$ and $s_{n+1} = 2s_n + 3$ for $n \ge 1$. Prove by induction that $s_n = 2^{n+2} 3$ for all positive integers n.
- 27. Prove by induction that $\sum_{r=1}^{n} r \cdot 5^r = \frac{(4n-1)5^{n+1}+5}{16}$ for all positive integers n.
- 28. Prove by induction that $\sum_{r=1}^{n} \frac{1}{r(r+3)} = \frac{11n+18}{18(n+1)(n+2)(n+3)} \cdot \frac{n(n+2)(n+3)}{2}$ for all positive integers n.
- 29. The Tribonacci sequence is defined by $T_1=1,\,T_2=1,\,T_3=2,$ and $T_{n+1}=T_n+T_{n-1}+T_{n-2}$ for $n\geq 3$. Prove by induction that $T_1+T_2+\ldots+T_n=\frac{T_{n+3}-2}{2}$ for all $n\geq 1$.
- 30. Prove by induction that $\sum_{r=1}^{n} r(r+1)(r+2) = \frac{n(n+1)(n+2)(n+3)}{4}$ for all positive integers n.

Section D: Mathematical Induction - Inequalities

- 31. Prove by induction that $6^n \ge 5n + 1$ for all non-negative integers n.
- 32. Prove by induction that $4^n \ge 3n^2$ for all integers $n \ge 2$.
- 33. Prove by induction that $n! \ge 5^{n-4}$ for all integers $n \ge 6$.
- 34. Prove by induction that $(1-x)^n \leq \frac{1}{1+nx}$ for all real $x \geq 0$ and all positive integers n.
- 35. Prove by induction that $\frac{1}{4^2} + \frac{1}{5^2} + \ldots + \frac{1}{n^2} < \frac{1}{3} \frac{1}{3n}$ for all integers $n \ge 4$.
- 36. Prove by induction that $\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} + \ldots + \frac{1}{\sqrt{n}} \ge 2(\sqrt{n} \sqrt{3})$ for all integers $n \ge 4$.
- 37. Prove by induction that $1 + \frac{1}{4^2} + \frac{1}{5^2} + \ldots + \frac{1}{n^2} < \frac{4}{3}$ for all integers $n \ge 4$.
- 38. Prove by induction that $5^n \ge 2n^3$ for all integers $n \ge 4$.
- 39. Prove by induction that $\left(1+\frac{1}{4n}\right)^n < \frac{3}{2}$ for all positive integers n.
- 40. Prove by induction that for $n \ge 4$, $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \ge \frac{11}{20}$.

Section E: Mathematical Induction - Divisibility

- 41. Prove by induction that $n^3 + 17n$ is divisible by 6 for all positive integers n.
- 42. Prove by induction that $7^n 1$ is divisible by 6 for all positive integers n.
- 43. Prove by induction that $9^n 1$ is divisible by 8 for all positive integers n.
- 44. Prove by induction that $2n^3 + 3n^2 + n$ is divisible by 6 for all positive integers n.
- 45. Prove by induction that $11^n 1$ is divisible by 10 for all positive integers n.
- 46. Prove by induction that $5^{2n+1} + 2^{n+2}$ is divisible by 7 for all non-negative integers n.

- 47. Prove by induction that $13^n 6^n$ is divisible by 7 for all positive integers n.
- 48. Prove by induction that $7^{2n} 1$ is divisible by 48 for all positive integers n.
- 49. Prove by induction that $n^{13} n$ is divisible by 13 for all positive integers n.
- 50. Prove by induction that $15^n + 16^n$ is divisible by 31 for all odd positive integers n.

Section F: Deduction in Algebraic Manipulation

- 51. Given that s + t = 10 and st = 21, find the value of $s^3 + t^3$.
- 52. If x + y + z = 4 and xy + yz + zx = 1, find the value of $x^2 + y^2 + z^2$.
- 53. Given that α and β are roots of $x^2 4x + 2 = 0$, prove that:
 - (a) $\alpha + \beta = 4$
 - (b) $\alpha\beta = 2$
 - (c) $\alpha^3 + \beta^3 = 52$
- 54. If $z + \frac{1}{z} = 5$, find expressions for:
 - (a) $z^2 + \frac{1}{z^2}$
 - (b) $z^3 + \frac{1}{z^3}$
 - (c) $z^4 + \frac{1}{z^4}$
- 55. Prove that if a + b + c = 0, then $a^2(b+c) + b^2(c+a) + c^2(a+b) = -3abc$.
- 56. Given that m, n, p are in geometric progression, prove that $\log m + \log p = 2 \log n$.
- 57. If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, prove that $A + B = \frac{\pi}{4}$.
- 58. Prove that $(x+y-z)^2 + (y+z-x)^2 + (z+x-y)^2 = 2(x^2+y^2+z^2) 2xy 2yz 2zx$.
- 59. Given that a, b, c are in arithmetic progression with common difference d, prove that $a^2 + c^2 = 2b^2 + 2d^2$.
- 60. If $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0$, prove that $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Section G: Deduction in Geometric Reasoning

- 61. In triangle XYZ, prove that the measure of an exterior angle equals 180 minus the measure of the adjacent interior angle.
- 62. Prove that if two circles touch internally, the line joining their centers passes through the point of contact.
- 63. Prove that the angle subtended by a chord at the center is twice the angle subtended by the same chord at any point on the major arc.
- 64. In triangle ABC, let O be the circumcenter. Prove that $\angle BOC = 2\angle A$ when A is acute.
- 65. Prove that if a parallelogram has one right angle, then it is a rectangle.
- 66. In a circle, prove that equal arcs subtend equal chords.
- 67. Prove that the tangent to a circle is perpendicular to the radius at the point of tangency.
- 68. In triangle PQR, prove that $p^2 = q^2 + r^2 2qr\cos P$ where p, q, r are the sides opposite to angles P, Q, R respectively.

- 69. Prove that the medians of a triangle intersect at a point that divides each median in the ratio 2:1.
- 70. Prove that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Section H: Advanced Proof Techniques

- 71. Prove that there exists a rational number between any two distinct irrational numbers.
- 72. Prove that if $h(x) = \frac{x-3}{2x+1}$ where $x \neq -\frac{1}{2}$, then h is bijective on its domain.
- 73. Prove that the set of negative integers has the same cardinality as the set of positive integers.
- 74. Use the pigeonhole principle to prove that among any 8 people, at least two were born on the same day of the week.
- 75. Prove that $3 + \sqrt{7}$ is irrational.
- 76. Prove that if gcd(a, b) = 1 and c divides ab, then gcd(c, a) divides b and gcd(c, b) divides a.
- 77. Prove that if r is rational and s is irrational, then rs is irrational (provided $r \neq 0$).
- 78. Use strong induction to prove that every integer $n \ge 12$ can be expressed as 4a + 5b where a and b are non-negative integers.
- 79. Prove that if a_1, a_2, \ldots, a_n are positive real numbers, then:

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \cdots a_n}$$

(HM-GM inequality)

80. Prove or disprove: The expression $n^3 + n + 1$ is prime for all positive integers n.

Section I: Proof Writing and Communication

- 81. Write a complete proof that for any triangle with sides a, b, c and angles A, B, C opposite to these sides respectively, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.
- 82. Prove that the equation $x^6 + y^6 = z^3$ has no positive integer solutions.
- 83. Let $G_n = 2^1 + 2^2 + 2^3 + \ldots + 2^n$. Prove that $G_n = 2^{n+1} 2$ and use this to show that G_n is never divisible by 3 for $n \ge 1$.
- 84. Prove the Apollonius identity: For any quadrilateral with sides a, b, c, d and diagonals p, q:

$$p^2 + q^2 = a^2 + b^2 + c^2 + d^2 - 4m^2$$

where m is the distance between the midpoints of the diagonals.

- 85. Consider the sequence defined by $f_1 = 3$, $f_2 = 8$, and $f_{n+2} = f_{n+1} + f_n$ for $n \ge 1$. Prove that $gcd(f_n, f_{n+1}) = 1$ for all $n \ge 1$.
- 86. Prove that for any positive integer n, the number $8^{2n} 3^{n+1}$ is divisible by 13.
- 87. Let $\ell: \mathbb{R} \setminus \{3\} \to \mathbb{R} \setminus \{-2\}$ be defined by $\ell(x) = \frac{-2x+5}{x-3}$. Prove that ℓ is bijective and find its inverse function.
- 88. Prove the Chinese Remainder Theorem for two congruences: If gcd(m, n) = 1, then the system $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ has a unique solution modulo mn.

- 89. Prove that $\log_a b$ is irrational when a and b are positive integers greater than 1 and b is not a perfect power of a.
- 90. Write a proof demonstrating that there are infinitely many primes of the form 4k + 3 where k is a non-negative integer.

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$