A Level Pure Mathematics Practice Test 4: Algebra and Functions

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 2 hours

Section A: Algebraic Manipulation

1. Simplify these expressions:

(a)
$$\frac{x^2-36}{x^2-12x+36}$$

(b)
$$\frac{5x^2-20}{x^2+x-12}$$

(a)
$$\frac{x^2-36}{x^2-12x+36}$$

(b) $\frac{5x^2-20}{x^2+x-12}$
(c) $\frac{x^3+125}{x^2+10x+25}$

(d)
$$\frac{x^4 - 625}{x^2 - 5x - 50}$$

2. Factorize completely:

(a)
$$x^3 - 12x^2 + 48x - 64$$

(b)
$$125x^3 - 8$$

(c)
$$x^6 - 729$$

(d)
$$x^{12} - 1$$

(e)
$$x^4 + 12x^2 + 36$$

(f)
$$x^3 + 4x^2 - 25x - 100$$

3. Express as single fractions in simplest form:

(a)
$$\frac{5}{x+4} - \frac{3}{x-2}$$

(b)
$$\frac{4x}{x^2-16} + \frac{3}{x-4}$$

(c)
$$\frac{2x-3}{x^2+5x+6} - \frac{x+2}{x^2-9}$$

(c)
$$\frac{2x-3}{x^2+5x+6} - \frac{x+2}{x^2-9}$$

(d) $\frac{4}{x-2} + \frac{3}{x+1} - \frac{5}{x^2-x-2}$

4. Use the binomial theorem to expand:

(a)
$$(5x+2)^4$$

(b)
$$(3x - \frac{1}{2x})^6$$

(c)
$$(1-3x)^7$$
, and find the coefficient of x^5

- (d) Find the middle term in the expansion of $(x^2 + \frac{3}{x})^{10}$
- 5. Simplify using laws of indices:

(a)
$$\frac{7^{3x-1} \cdot 49^{x+2}}{343^x}$$

- (b) $\frac{64^x \cdot 32^{2x-1}}{128^{x+1}}$
- (c) $(x^{\frac{3}{7}})^{\frac{7}{9}} \cdot x^{-\frac{2}{3}}$
- (d) $\frac{(6x)^2 \cdot (2x^3)^3}{12x^8}$

Section B: Linear and Quadratic Equations

- 6. Solve these equations:
 - (a) $\frac{5x-2}{6} + \frac{2x+3}{4} = \frac{3}{2}$
 - (b) $\frac{4x}{x+3} = \frac{6}{x-1}$
 - (c) $\sqrt{5x+1} = 3x-1$
 - (d) $\frac{4}{x+3} + \frac{2}{x-2} = \frac{3}{5}$
- 7. Solve these quadratic equations, leaving answers in exact form where appropriate:
 - (a) $6x^2 11x + 3 = 0$
 - (b) $x^2 10x + 7 = 0$
 - (c) $5x^2 = 8x + 3$
 - (d) $(5x-2)^2 = 3(3x-1)$
- 8. For the quadratic equation $4x^2 (3k 2)x + 2k = 0$:
 - (a) Find the discriminant in terms of k
 - (b) Find the values of k for which the equation has equal roots
 - (c) Find the values of k for which the equation has no real roots
 - (d) When k = 4, find the sum and product of the roots
- 9. The quadratic $rx^2 + sx + t = 0$ has roots α and β .
 - (a) Express $\alpha + \beta$ and $\alpha\beta$ in terms of r, s, and t
 - (b) Find a quadratic equation with roots $\alpha 3$ and $\beta 3$
 - (c) Find a quadratic equation with roots $\frac{\alpha}{2}$ and $\frac{\beta}{2}$
 - (d) If $\alpha^2 + \beta^2 = 22$ and $\alpha + \beta = 7$, find $\alpha\beta$

Section C: Cubic and Higher Order Equations

- 10. Solve these cubic equations:
 - (a) $x^3 8x^2 + 19x 12 = 0$
 - (b) $x^3 4x^2 11x + 30 = 0$
 - (c) $6x^3 + x^2 16x + 8 = 0$
 - (d) $x^3 12x^2 + 47x 60 = 0$
- 11. Given that x = -2 is a root of $x^3 + 3x^2 + ax + b = 0$:
 - (a) Find a relationship between a and b
 - (b) If the other two roots are equal, find a and b
 - (c) Hence find all three roots
 - (d) Express the cubic in factored form
- 12. Solve these quartic equations:

(a)
$$x^4 - 20x^2 + 64 = 0$$

(b)
$$x^4 - 7x^2 + 12 = 0$$

(c)
$$(x^2 + 2x)^2 - 11(x^2 + 2x) + 24 = 0$$

(d)
$$x^4 + x^3 - 9x^2 - 3x + 18 = 0$$
 (given that $x = -3$ is a root)

13. Use the substitution $v = x - \frac{3}{x}$ to solve:

(a)
$$x^2 + \frac{9}{x^2} = 11$$

(b)
$$5x^2 - 2x + \frac{6}{x} - \frac{15}{x^2} = 0$$

Section D: Functions - Definition and Notation

14. For the function $f(x) = \frac{5x+1}{3x-2}$ where $x \neq \frac{2}{3}$:

(a) Find
$$f(0)$$
, $f(1)$, and $f(-1)$

- (b) Solve f(x) = 4
- (c) Find the value of x for which f(x) is undefined
- (d) Find the range of f(x)

15. Given $g(x) = x^2 + 10x + 21$:

- (a) Express g(x) in the form $(x+p)^2+q$
- (b) State the minimum value of g(x) and the value of x at which it occurs
- (c) Solve g(x) = 0
- (d) Find the range of q(x)

16. For $h(x) = \sqrt{36 - x^2}$:

- (a) Find the domain of h(x)
- (b) Find the range of h(x)
- (c) Sketch the graph of y = h(x)
- (d) Solve h(x) = 5

17. Define
$$k(x) = \begin{cases} 3x^2 - 1 & \text{if } x \le 1\\ 2x + 1 & \text{if } 1 < x < 4\\ 9 & \text{if } x \ge 4 \end{cases}$$

- (a) Find k(-1), k(1), k(2.5), and k(5)
- (b) Is k(x) continuous at x = 1? Justify your answer
- (c) Is k(x) continuous at x = 4? Justify your answer
- (d) Sketch the graph of y = k(x)

Section E: Composite and Inverse Functions

18. Given f(x) = 6x - 2 and $g(x) = x^2 + 4$:

- (a) Find f(g(x)) and g(f(x))
- (b) Calculate f(g(0)) and g(f(0))
- (c) Solve f(g(x)) = 28
- (d) Find $(f \circ g)^{-1}(x)$

- 19. For $p(x) = \frac{4x-3}{2x+1}$ where $x \neq -\frac{1}{2}$:
 - (a) Find $p^{-1}(x)$
 - (b) Verify that $p(p^{-1}(x)) = x$
 - (c) State the domain and range of $p^{-1}(x)$
 - (d) Solve $p(x) = p^{-1}(x)$
- 20. Given f(x) = 7x + 1 and $g(x) = \frac{3}{x-1}$ where $x \neq 1$:
 - (a) Find $(f \circ g)(x)$ and state its domain
 - (b) Find $(g \circ f)(x)$ and state its domain
 - (c) Find $(f \circ g)^{-1}(x)$
 - (d) Verify your answer by showing $(f \circ g)((f \circ g)^{-1}(x)) = x$
- 21. The function $h(x) = x^2 12x + 5$ is defined for $x \ge 6$.
 - (a) Explain why the domain restriction is necessary for h^{-1} to exist
 - (b) Find $h^{-1}(x)$
 - (c) State the domain and range of $h^{-1}(x)$
 - (d) Sketch h(x) and $h^{-1}(x)$ on the same axes

Section F: Graphing Functions

- 22. Sketch the graphs of these functions, clearly showing key features:
 - (a) $y = x^3 + 6x^2 + 12x + 8$
 - (b) $y = \frac{5x+1}{3x-2}$
 - (c) $y = |x^2 10x + 21|$
 - (d) $y = \frac{x^2 + 16}{x^2 16}$
- 23. For the rational function $f(x) = \frac{x^2 + 4x + 3}{x^2 16}$:
 - (a) Find the domain of f(x)
 - (b) Find the x and y intercepts
 - (c) Identify any vertical asymptotes
 - (d) Find the horizontal asymptote
 - (e) Sketch the graph of y = f(x)
- 24. Analyze the function $g(x) = \frac{6x^2-24}{x^2+2x-15}$:
 - (a) Factorize the numerator and denominator
 - (b) Simplify g(x) and state its domain
 - (c) Find any asymptotes
 - (d) Find the coordinates of any stationary points
 - (e) Sketch the graph of y = g(x)
- 25. For the polynomial $p(x) = x^4 8x^3 + 16x^2$:
 - (a) Factorize p(x) completely
 - (b) Find the roots and their multiplicities
 - (c) Determine the behavior at each root
 - (d) Find p'(x) and locate stationary points
 - (e) Sketch the graph of y = p(x)

Section G: Function Transformations

- 26. Given the function $f(x) = x^2$, describe the transformations and sketch:
 - (a) y = f(x+1) 3
 - (b) y = -4f(x-2)
 - (c) y = f(5x) + 2
 - (d) $y = \frac{3}{2}f(-x) 1$
- 27. The graph of y = f(x) has vertex at (4, -1) and passes through (2, 3) and (6, 3). Find the vertex and two other points for:
 - (a) y = f(x) 5
 - (b) y = f(x+2)
 - (c) y = 4f(x)
 - (d) $y = f(\frac{x}{2})$
 - (e) y = -f(x)
 - (f) y = f(-x)
- 28. Given that g(x) = |x + 4| 2:
 - (a) Describe the transformations applied to y = |x|
 - (b) State the vertex of the graph
 - (c) Find the range of g(x)
 - (d) Solve g(x) = 4
 - (e) Sketch the graph of y = g(x)
- 29. The function $h(x) = \cot x$ is transformed to $k(x) = 3\cot(4x + \pi) + 2$.
 - (a) Identify each transformation in the correct order
 - (b) State the period of k(x)
 - (c) Find the phase shift
 - (d) Find the vertical shift
 - (e) Find the vertical asymptotes in the interval $[0,\pi]$
 - (f) Sketch one complete cycle of y = k(x)

Section H: Special Functions and Applications

- 30. For the exponential function $f(x) = 4^{x+1} 5$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Find the horizontal asymptote
 - (d) Solve f(x) = 59
 - (e) Find $f^{-1}(x)$ and state its domain and range
- 31. For the logarithmic function $g(x) = \log_5(3x+2) 2$:
 - (a) State the domain and range
 - (b) Find the x-intercept
 - (c) Find the vertical asymptote

- (d) Solve q(x) = 3
- (e) Express g(x) in terms of natural logarithms
- 32. A function is defined as $f(x) = \frac{ux+v}{wx+y}$ where $uy vw \neq 0$.
 - (a) Find the domain of f(x)
 - (b) Find $f^{-1}(x)$
 - (c) Show that $(f^{-1} \circ f)(x) = x$
 - (d) Find the condition under which f is an involution (i.e., f(f(x)) = x)
- 33. The modulus function |x| can be written as: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
 - (a) Sketch y = |5x 2|
 - (b) Solve |5x 2| = 8
 - (c) Solve |5x 2| > 7
 - (d) Find the range of values for which $|5x-2| \leq 3$

Section I: Problem Solving and Applications

- 34. A semicircular arch is to be constructed with a perimeter of 100 meters. Let r be the radius.
 - (a) Express the perimeter in terms of r
 - (b) Show that the area $A = r(50 \frac{\pi r}{2})$
 - (c) Find the value of r that maximizes the area
 - (d) Calculate the maximum area
 - (e) State the domain of the function in this context
- 35. The height h (in meters) of a rocket after t seconds is given by: $h(t) = -4t^2 + 32t + 12$
 - (a) Express h(t) in completed square form
 - (b) Find when the rocket reaches maximum height
 - (c) Calculate the maximum height
 - (d) Determine when the rocket returns to ground level
 - (e) Find the rocket's height after 5 seconds
- 36. A company's daily production output O (in units) depends on the number of workers w according to: $O(w) = -2w^2 + 24w + 50$ for $1 \le w \le 15$
 - (a) Find the number of workers that maximizes output
 - (b) Calculate the maximum daily output
 - (c) Determine how many workers are needed for an output of 122 units
 - (d) Find the output when there are 8 workers
- 37. A function $f(x) = \frac{x^2+9}{x^2-25}$ models a response ratio.
 - (a) Find the domain and range of f(x)
 - (b) Determine any asymptotes and explain their significance
 - (c) Find when f(x) = 1
 - (d) Analyze the behavior as $x \to \pm \infty$
 - (e) Sketch the graph and identify any symmetry

- 38. Two functions are related by g(x) = f(5x + 1) 4 where $f(x) = x^2$.
 - (a) Find an explicit expression for g(x)
 - (b) Describe the transformations that map f to g
 - (c) Find the vertex of the parabola y = g(x)
 - (d) If f has domain [-4,1], find the domain of g
 - (e) Solve g(x) = f(x) and describe the intersection points

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepupmaths.co.uk