GCSE Foundation Mathematics Practice Test 6: Probability

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 90 minutes

S

(e) P(spinning a two-digit number)

Section A: Basic Probability Concepts	
1. State whether these events are certain, likely, even chance, unlikely, or impossible:	
 (a) Getting a prime number when rolling a fair die (b) Rolling a 0 on a standard six-sided die (c) A baby being born on a Wednesday (d) Getting a number greater than 6 when rolling a standard die (e) Choosing a court card (J, Q, K) from a standard pack (f) A year having 366 days 	
2. Express these probabilities as fractions, decimals, and percentages:	
(a) $P(\text{impossible}) = 0$ (b) $P(\text{certain}) = 1$ (c) $P(\text{even chance}) = 0.5$ (d) $P(\text{fairly likely}) = 0.75$ (e) $P(\text{rare}) = \frac{1}{8}$	
3. Complete these probability statements:	
(a) All probabilities are between and (b) If $P(W) = 0.35$, then $P(\text{not } W) =$ (c) If $P(V) = \frac{8}{15}$, then $P(\text{not } V) =$ (d) The sum of all probabilities in a sample space equals	
4. A dial has 9 equal segments with these numbers: 7, 14, 21, 28, 35, 42, 49, 56, 63. Write down	vn:
 (a) The sample space (b) P(spinning 42) (c) P(spinning a multiple of 21) (d) P(spinning a number greater than 50) 	

Section B: Single Event Probability

- 5. A fair twenty-sided die numbered 1-20 is rolled. Find the probability of rolling:
 - (a) A 15
 - (b) A triangular number
 - (c) A number greater than 14
 - (d) A number less than or equal to 6
 - (e) A multiple of 5
 - (f) A number between 8 and 13 (inclusive)
- 6. A pouch contains 13 fabric squares, 10 felt circles, and 5 leather strips. An item is drawn at random. Find the probability of drawing:
 - (a) A fabric square
 - (b) A felt circle
 - (c) A leather strip
 - (d) A fabric square or felt circle
 - (e) Not a leather strip
 - (f) Not a fabric square
- 7. A standard pack of 52 playing cards is shuffled. Find the probability of drawing:
 - (a) An 8
 - (b) A spade
 - (c) A black card
 - (d) The king of hearts
 - (e) A 2 or 3
 - (f) A red 8
- 8. The probability that Ben scores in a football match is $\frac{5}{12}$. What is the probability that he doesn't score?
- 9. In a photography club of 45 members, 32 own digital cameras. If a member is chosen at random, find the probability they:
 - (a) Own a digital camera
 - (b) Don't own a digital camera

Section C: Sample Spaces and Outcomes

- 10. A four-sided die (numbered 1-4) is rolled twice.
 - (a) List all possible outcomes
 - (b) How many outcomes are in the sample space?
 - (c) Find P(both rolls show 4)
 - (d) Find P(at least one roll shows 1)
 - (e) Find P(first roll greater than second roll)
- 11. Two fair dice are rolled and their scores are compared. Record whether the first die is greater than (;), less than (;), or equal to (=) the second die.

(a) Complete the sample space table:

Compare	1	2	3	4	5	6
1	=	i	i	i	i	i
2	į					
3	į					
4	i					
5	i					
6	į					

- (b) Find P(first die > second die)
- (c) Find P(dice show equal values)
- (d) Find P(first die < second die)
- (e) What do you notice about these three probabilities?
- 12. A spinner has 7 equal sections: Aqua (A), Bronze (B), Copper (C), Denim (D), Emerald (E), Frost (F), Gold (G). The spinner is used twice.
 - (a) How many possible outcomes are there?
 - (b) Find P(same color both times)
 - (c) Find P(at least one aqua)
 - (d) Find P(no bronze)
- 13. A set contains prime numbers 11, 13, 17, 19. Two numbers are drawn without replacement.
 - (a) List all possible pairs
 - (b) Find P(both numbers are prime)
 - (c) Find P(sum of numbers = 30)
 - (d) Find P(product of numbers > 200)

Section D: Probability Rules

- 14. For mutually exclusive events X and Y, where P(X) = 0.28 and P(Y) = 0.42:
 - (a) Find P(X or Y)
 - (b) Find P(neither X nor Y)
 - (c) What is P(X and Y)? Explain your answer.
- 15. A card is drawn from a standard pack. Let P = "drawing a club" and Q = "drawing a face card".
 - (a) Find P(P)
 - (b) Find P(Q)
 - (c) Find P(P and Q)
 - (d) Find P(P or Q)
 - (e) Are events P and Q mutually exclusive? Explain.
- 16. The probability of snow on Thursday is 0.4. The probability of snow on Friday is 0.6. Assuming the events are independent:
 - (a) Find the probability of snow on both days
 - (b) Find the probability of no snow on either day

- (c) Find the probability of snow on at least one day
- (d) Find the probability of snow on exactly one day
- 17. A biased coin has P(heads) = 0.65. The coin is flipped three times.
 - (a) Find P(three heads)
 - (b) Find P(three tails)
 - (c) Find P(at least two tails)
 - (d) Find P(exactly one head)

Section E: Tree Diagrams

- 18. A container has 8 smooth stones and 4 rough stones. Two stones are drawn without replacement.
 - (a) Draw a tree diagram showing all possibilities
 - (b) Find P(two smooth stones)
 - (c) Find P(two rough stones)
 - (d) Find P(one smooth and one rough)
 - (e) Find P(at least one smooth stone)
- 19. The probability that a student passes French is 0.84 and passes German is 0.76. Assume the subjects are independent.
 - (a) Draw a tree diagram
 - (b) Find the probability of passing both subjects
 - (c) Find the probability of failing both subjects
 - (d) Find the probability of passing exactly one subject
 - (e) Find the probability of passing at least one subject
- 20. A shopping center has two escalators. Escalator A works 91% of the time, Escalator B works 94% of the time.
 - (a) Draw a tree diagram
 - (b) Find the probability both escalators work
 - (c) Find the probability exactly one escalator works
 - (d) Find the probability at least one escalator works
 - (e) Find the probability neither escalator works
- 21. Pocket 1 contains 5 round buttons and 5 square buttons. Pocket 2 contains 8 round buttons and 2 square buttons. A pocket is chosen at random, then a button is drawn from that pocket.
 - (a) Draw a tree diagram
 - (b) Find the probability of drawing a round button
 - (c) Find the probability of drawing a square button
 - (d) If a square button is drawn, what is the probability it came from Pocket 1?

Section F: Conditional Probability

22. The two-way table shows information about hotel guests and their room type:

	Single room	Double room	Total
Business travelers	22	38	60
Tourists	48	32	80
Total	70	70	140

A guest is chosen at random. Find:

- (a) P(double room)
- (b) P(business traveler)
- (c) P(double room and business traveler)
- (d) P(double room business traveler)
- (e) P(business traveler double room)

23. In a survey of 240 people about streaming services:

- 150 people use Netflix
- 120 people use Disney+
- 80 people use both Netflix and Disney+

Find the probability that a randomly chosen person:

- (a) Uses Netflix or Disney+
- (b) Uses neither Netflix nor Disney+
- (c) Uses Disney+ given they use Netflix
- (d) Uses only Netflix
- (e) Uses only Disney+
- 24. A container has red and silver marbles. $P(\text{red}) = \frac{7}{16}$. Two marbles are drawn without replacement.

If there are 32 marbles in total:

- (a) How many red marbles are there?
- (b) How many silver marbles are there?
- (c) Find P(second marble is red first marble is red)
- (d) Find P(second marble is red first marble is silver)

Section G: Experimental vs Theoretical Probability

25. A biased die is rolled 600 times with these results:

Number	1	2	3	4	5	6
Frequency	80	95	110	120	100	95

- (a) Calculate the experimental probability for each number
- (b) Which number is most likely to appear?
- (c) Compare with theoretical probabilities for a fair die
- (d) If the die is rolled 1800 times, estimate how many 6s you would expect

- 26. A carnival wheel is tested and gives these results: Jade: 72 times, Coral: 48 times, Pearl: 36 times, Ruby: 24 times
 - (a) How many times was the wheel spun?
 - (b) Calculate the experimental probability of each colour
 - (c) What pattern do you notice in the frequencies?
 - (d) Estimate how many times jade would appear in 540 spins
- 27. A die is rolled 120 times and shows an even number 78 times.
 - (a) What is the experimental probability of rolling an even number?
 - (b) What is the experimental probability of rolling an odd number?
 - (c) Is this die likely to be fair? Explain your reasoning.
 - (d) If the die is rolled 200 more times, estimate how many even numbers you would expect

Section H: Problem Solving

- 28. In a contest, the probability of winning the jackpot is $\frac{1}{1200000000}$.
 - (a) Express this as a decimal (to 3 significant figures)
 - (b) What is the probability of not winning?
 - (c) If 24 million people enter, estimate how many will win
 - (d) Is it sensible to expect to win? Explain.
- 29. A pregnancy test is 99% accurate. This means:
 - If someone is pregnant, there's a 99% chance the test is positive
 - If someone isn't pregnant, there's a 99% chance the test is negative

In a group where 12% of people are pregnant:

- (a) Out of 1000 people, how many are actually pregnant?
- (b) How many of those who are pregnant will test positive?
- (c) How many who aren't pregnant will test negative?
- (d) How many false positives will there be?
- 30. Eight friends each pick a playing card suit (hearts, diamonds, clubs, spades). What is the probability that:
 - (a) All eight pick the same suit?
 - (b) All eight pick different suits? (Impossible explain why)
 - (c) At least seven pick the same suit?
 - (d) No one picks hearts?
- 31. A computer password uses 3 different letters from the alphabet. No letter can be repeated and order matters.
 - (a) How many different passwords are possible?
 - (b) What is the probability of guessing the password correctly in one attempt?
 - (c) If vowels (A, E, I, O, U) cannot be used, how many passwords are possible?
- 32. In a dice game, you win if you roll four dice and get exactly three of the same number.

- (a) In how many ways can you choose which three dice show the same number?
- (b) If the three dice all show 6s, how many outcomes are possible for the fourth die?
- (c) What is the probability of getting exactly three 6s?
- (d) If you play 1296 games, estimate how many you would win with exactly three 6s
- (e) Is this game fair if you need exactly three of any number to win?

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$