A Level Pure Mathematics Practice Test 3: Proof

Instructions:

Answer all questions. Show your working clearly. Calculators may NOT be used in this test.

Time allowed: 2 hours

Section A: Direct Proof

- 1. Prove that the difference of two even integers is always even.
- 2. Prove that if n is an odd integer, then n^3 is odd.
- 3. Prove that the sum of three consecutive integers is always divisible by 3.
- 4. Prove that for any integer n, the expression 2n(n-1) is always even.
- 5. Given that r and s are rational numbers, prove that rs is rational.
- 6. Prove that if $a \ge 0$ and $b \ge 0$, then $\frac{2ab}{a+b} \le \sqrt{ab}$ (HM-GM inequality).
- 7. Prove that for any real numbers p and q, $p^2 + q^2 \ge 2|pq|$.
- 8. Prove that if x, y, and z are the sides of a triangle, then $x + y \ge z$, $y + z \ge x$, and $z + x \ge y$.
- 9. Let $m(x) = x^7 5x^5 + 3x^3 x$. Prove that m is an odd function.
- 10. Prove that the function n(x) = -2x + 5 is strictly decreasing on \mathbb{R} .

Section B: Proof by Contradiction

- 11. Prove that $\sqrt{11}$ is irrational.
- 12. Prove that there are infinitely many even numbers.
- 13. Prove that $\sqrt{8}$ is irrational.
- 14. Prove that if n^2 is divisible by 3, then n is divisible by 3.
- 15. Prove that there is no smallest positive real number.
- 16. Prove that if a and b are integers with $a^2 + b^2 = 6$, then at least one of a or b is even.
- 17. Prove that $\log_7 5$ is irrational.
- 18. Prove that the equation $x^2 + x + 1 = 0$ has no real solutions.
- 19. Prove that the equation $x^2 7y^2 = 4$ has no integer solutions.
- 20. Prove that if n is an integer and n^2 is odd, then n is odd.

Section C: Mathematical Induction - Sequences and Series

- 21. Prove by induction that $4+8+12+\ldots+4n=2n(n+1)$ for all positive integers n.
- 22. Prove by induction that $2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2n(n+1)(2n+1)}{3}$ for all positive integers n.
- 23. Prove by induction that $3+7+11+\ldots+(4n-1)=n(2n+1)$ for all positive integers n.
- 24. Prove by induction that $1+8+15+\ldots+(7n-6)=\frac{n(7n-5)}{2}$ for all positive integers n.
- 25. Prove by induction that $5+9+13+\ldots+(4n+1)=n(2n+3)$ for all positive integers n.
- 26. Let $z_1 = 1$ and $z_{n+1} = 3z_n + 2$ for $n \ge 1$. Prove by induction that $z_n = 3^n 2$ for all positive integers n.
- 27. Prove by induction that $\sum_{r=1}^{n} r \cdot 4^r = \frac{(3n-1)4^{n+1}+4}{9}$ for all positive integers n.
- 28. Prove by induction that $\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{n}{2n+1}$ for all positive integers n.
- 29. The Pell sequence is defined by $P_1=1$, $P_2=2$, and $P_{n+1}=2P_n+P_{n-1}$ for $n\geq 2$. Prove by induction that $P_1+P_2+\ldots+P_n=\frac{P_{n+2}-2}{3}$ for all $n\geq 1$.
- 30. Prove by induction that $\sum_{r=1}^{n} r^2(r+2) = \frac{n(n+1)(n+2)(3n+7)}{12}$ for all positive integers n.

Section D: Mathematical Induction - Inequalities

- 31. Prove by induction that $5^n \ge 4n + 1$ for all non-negative integers n.
- 32. Prove by induction that $3^n \ge 2n^2$ for all integers $n \ge 3$.
- 33. Prove by induction that $n! \ge 4^{n-3}$ for all integers $n \ge 5$.
- 34. Prove by induction that $(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2$ for all real $x \ge 0$ and all integers $n \ge 2$.
- 35. Prove by induction that $\frac{1}{3^2} + \frac{1}{4^2} + \ldots + \frac{1}{n^2} < \frac{1}{2} \frac{1}{2n}$ for all integers $n \ge 3$.
- 36. Prove by induction that $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \ldots + \frac{1}{\sqrt{n}} \ge 2(\sqrt{n} \sqrt{2})$ for all integers $n \ge 3$.
- 37. Prove by induction that $1 + \frac{1}{2^3} + \frac{1}{3^3} + \ldots + \frac{1}{n^3} < \frac{5}{4}$ for all positive integers n.
- 38. Prove by induction that $4^n \ge n^3$ for all integers $n \ge 6$.
- 39. Prove by induction that $\left(1+\frac{1}{3n}\right)^n < 2$ for all positive integers n.
- 40. Prove by induction that for $n \ge 3$, $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \ge \frac{7}{12}$.

Section E: Mathematical Induction - Divisibility

- 41. Prove by induction that $n^3 + 11n$ is divisible by 6 for all positive integers n.
- 42. Prove by induction that $6^n 1$ is divisible by 5 for all positive integers n.
- 43. Prove by induction that $8^n 1$ is divisible by 7 for all positive integers n.
- 44. Prove by induction that $n^3 n$ is divisible by 6 for all positive integers n.
- 45. Prove by induction that $10^n 1$ is divisible by 9 for all positive integers n.
- 46. Prove by induction that $4^{2n} + 15n 1$ is divisible by 9 for all positive integers n.
- 47. Prove by induction that $12^n 5^n$ is divisible by 7 for all positive integers n.

- 48. Prove by induction that $5^{2n} 1$ is divisible by 24 for all positive integers n.
- 49. Prove by induction that $n^{11} n$ is divisible by 11 for all positive integers n.
- 50. Prove by induction that $14^n 1$ is divisible by 13 for all positive integers n.

Section F: Deduction in Algebraic Manipulation

- 51. Given that u + v = 8 and uv = 15, find the value of $u^2 + v^2$.
- 52. If p+q+r=2 and pq+qr+rp=-3, find the value of $p^2+q^2+r^2$.
- 53. Given that α and β are roots of $x^2 + 2x 5 = 0$, prove that:
 - (a) $\alpha + \beta = -2$
 - (b) $\alpha\beta = -5$
 - (c) $\alpha^2 + \beta^2 = 14$
- 54. If $y \frac{1}{y} = 2$, find expressions for:
 - (a) $y^2 + \frac{1}{y^2}$
 - (b) $y^3 \frac{1}{y^3}$
 - (c) $y^4 + \frac{1}{y^4}$
- 55. Prove that if x + y + z = 0, then $x^3 + y^3 + z^3 = 3xyz$.
- 56. Given that a, b, c are in arithmetic progression, prove that 3b = a + c + b.
- 57. If $\sin \theta + \sin \phi + \sin \psi = 0$ and $\cos \theta + \cos \phi + \cos \psi = 0$, prove that $\sin 3\theta + \sin 3\phi + \sin 3\psi = 3\sin(\theta + \phi + \psi)$.
- 58. Prove that $(p-q)^3 + (q-r)^3 + (r-p)^3 = 3(p-q)(q-r)(r-p)$.
- 59. Given that $\log x$, $\log y$, $\log z$ are in arithmetic progression, prove that $y^2 = xz$.
- 60. If p, q, r are in harmonic progression, prove that $\frac{2}{q} = \frac{1}{p} + \frac{1}{r}$.

Section G: Deduction in Geometric Reasoning

- 61. In triangle PQR, prove that each exterior angle equals the sum of the two non-adjacent interior angles.
- 62. Prove that the line joining the centers of two intersecting circles is perpendicular to their common chord.
- 63. Prove that opposite angles of a cyclic quadrilateral sum to 180.
- 64. In triangle ABC, let I be the incenter. Prove that $\angle BIC = 90 + \frac{\angle A}{2}$.
- 65. Prove that if two triangles have two sides and the included angle equal, then the triangles are congruent (SAS).
- 66. In a circle, prove that the angle between two chords equals half the sum of the intercepted arcs.
- 67. Prove that if two tangents are drawn to a circle from an external point, they make equal angles with the line joining that point to the center.
- 68. In triangle DEF, prove that $\frac{d}{\sin D} = \frac{e}{\sin E}$ where d and e are the sides opposite to angles D and E respectively.

- 69. Prove that the three angle bisectors of a triangle are concurrent at the incenter.
- 70. Prove that if a quadrilateral has one pair of opposite sides equal and parallel, then it is a parallelogram.

Section H: Advanced Proof Techniques

- 71. Prove that between any two distinct real numbers, there exists an irrational number.
- 72. Prove that if $g(x) = \frac{2x+3}{x-1}$ where $x \neq 1$, then g has an inverse function on its domain.
- 73. Prove that the set of odd positive integers has the same cardinality as the set of positive integers.
- 74. Use the pigeonhole principle to prove that in any set of 7 integers, at least two have the same remainder when divided by 6.
- 75. Prove that $2 + \sqrt{3}$ is irrational.
- 76. Prove that if p is prime and $p \ge 3$, then p is of the form $6k \pm 1$ for some integer k.
- 77. Prove that if a is rational and b is irrational, then a+b is irrational (assuming $a \neq 0$).
- 78. Use strong induction to prove that every positive integer greater than 1 is either prime or can be written as a product of primes.
- 79. Prove that if x_1, x_2, \ldots, x_n are positive real numbers, then:

$$\sqrt[n]{x_1 x_2 \cdots x_n} \le \frac{x_1 + x_2 + \ldots + x_n}{n}$$

(GM-AM inequality)

80. Prove or disprove: For all positive integers $n, 2^n - 1$ is prime.

Section I: Proof Writing and Communication

- 81. Write a complete proof that in any triangle with sides a, b, c and area S, the radius of the circumcircle is $R = \frac{abc}{4S}$.
- 82. Prove that the Diophantine equation $x^4 y^4 = z^2$ has no positive integer solutions.
- 83. Let $B_n = \sum_{k=1}^n \frac{1}{k}$ be the *n*-th harmonic number. Prove that B_n is never an integer for $n \geq 2$.
- 84. Prove the parallelogram law: For vectors \mathbf{u} and \mathbf{v} :

$$|\mathbf{u} + \mathbf{v}|^2 + |\mathbf{u} - \mathbf{v}|^2 = 2(|\mathbf{u}|^2 + |\mathbf{v}|^2)$$

- 85. Consider the sequence defined by $e_1 = 2$, $e_2 = 7$, and $e_{n+2} = e_{n+1} + e_n$ for $n \ge 1$. Prove that $gcd(e_n, e_{n+1}) = 1$ for all $n \ge 1$.
- 86. Prove that for any positive integer n, the number $7^{2n} 2^{3n}$ is divisible by 5.
- 87. Let $k: \mathbb{R} \setminus \{-2\} \to \mathbb{R} \setminus \{3\}$ be defined by $k(x) = \frac{3x+1}{x+2}$. Prove that k is bijective and find k^{-1} .
- 88. Prove Bézout's identity: For integers a and b with gcd(a, b) = d, there exist integers x and y such that ax + by = d.
- 89. Prove that $\sqrt[3]{2}$ is irrational using the fundamental theorem of arithmetic.
- 90. Write a constructive proof showing that for any two distinct rational numbers r and s, there exists a rational number t such that r < t < s.

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$