A Level Pure Mathematics Practice Test 2: Sequences and Series

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Arithmetic Sequences

- 1. For the arithmetic sequence $7, 12, 17, 22, 27, \ldots$
 - (a) Find the first term a and common difference d
 - (b) Find the general term u_n
 - (c) Calculate u_{25}
 - (d) Find which term equals 97
 - (e) Determine if 150 is a term in the sequence
- 2. An arithmetic sequence has $u_4 = 23$ and $u_9 = 43$.
 - (a) Find the first term and common difference
 - (b) Write the general term u_n
 - (c) Calculate u_{20}
 - (d) Find the first term to exceed 100
 - (e) Determine the largest value of n for which $u_n < 150$
- 3. The *n*th term of an arithmetic sequence is $u_n = 4n + 1$.
 - (a) Write down the first five terms
 - (b) Find the common difference
 - (c) Calculate u_{40}
 - (d) Find the sum of the first 30 terms
 - (e) For what value of n is $u_n = 121$?
- 4. Three numbers y 2d, y, and y + 2d are in arithmetic progression with sum 36 and product 1620.
 - (a) Find the value of y
 - (b) Set up an equation for d
 - (c) Solve to find the values of d
 - (d) Write down the three numbers for each case
- 5. An arithmetic sequence has first term a and common difference d.

- (a) If $u_m = x$ and $u_n = y$ where $m \neq n$, find u_{m+n} in terms of x, y, m, and n
- (b) Show that the sequence of terms $u_1 + u_n$, $u_2 + u_{n-1}$, $u_3 + u_{n-2}$, ... is constant
- (c) Prove that $S_n = \frac{n}{2}(u_1 + u_n)$
- (d) If $S_p=q$ and $S_q=p$ where $p\neq q,$ find S_{p+q}

Section B: Arithmetic Series

- 6. Calculate the sum of these arithmetic series:
 - (a) 4+9+14+19+... (first 18 terms)
 - (b) $25 + 21 + 17 + 13 + \dots$ (first 10 terms)
 - (c) $\frac{3}{4} + \frac{5}{4} + \frac{7}{4} + \frac{9}{4} + \dots$ (first 20 terms)
 - (d) The series with first term 12, last term 72, and 9 terms
- 7. An arithmetic series has first term 6 and common difference 4.
 - (a) Find the sum of the first 25 terms
 - (b) Find the smallest value of n for which $S_n \ge 2000$
 - (c) If the sum of the first n terms is 816, find n
 - (d) Express S_n in terms of n
- 8. The sum of the first n terms of an arithmetic series is $S_n = 3n^2 n$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common difference
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 9. Find the sum of:
 - (a) All multiples of 9 between 100 and 1000
 - (b) All odd integers from 1 to 99
 - (c) All integers from 1 to 200 that are divisible by 4
 - (d) The integers from 1 to 150 that are divisible by 5 or 7
- 10. An arithmetic series has $S_{15} = 330$ and $S_{25} = 850$.
 - (a) Find the first term and common difference
 - (b) Calculate S_{40}
 - (c) Find the 20th term
 - (d) Determine when the sum first exceeds 3000

Section C: Geometric Sequences

- 11. For the geometric sequence $2, 8, 32, 128, 512, \ldots$
 - (a) Find the first term a and common ratio r
 - (b) Find the general term u_n
 - (c) Calculate u_{12}
 - (d) Find which term equals 2048

- (e) Determine if 4096 is a term in the sequence
- 12. A geometric sequence has $u_3 = 12$ and $u_6 = 324$.
 - (a) Find the common ratio r
 - (b) Find the first term a
 - (c) Write the general term u_n
 - (d) Calculate u_{10}
 - (e) Find the first term to exceed 50000
- 13. The *n*th term of a geometric sequence is $u_n = 3 \times 4^{n-1}$.
 - (a) Write down the first five terms
 - (b) Find the common ratio
 - (c) Calculate u_8
 - (d) Find the sum of the first 6 terms
 - (e) For what value of n is $u_n = 12288$?
- 14. Three numbers $\frac{z}{s}$, z, and zs are in geometric progression with sum 42 and product 512.
 - (a) Find the value of z
 - (b) Set up an equation for s
 - (c) Solve to find the values of s
 - (d) Write down the three numbers for each case
- 15. A geometric sequence has first term a and common ratio r.
 - (a) If $u_m = p$ and $u_n = q$ where $m \neq n$, find u_{m+n} in terms of p, q, m, and n
 - (b) Show that $u_1 \cdot u_{2n-1} = u_2 \cdot u_{2n-2} = u_3 \cdot u_{2n-3} = \dots = u_n^2$
 - (c) Prove that if three terms u_i , u_j , u_k are in arithmetic progression, then $\frac{1}{u_i}$, $\frac{1}{u_j}$, $\frac{1}{u_k}$ are in harmonic progression
 - (d) Show that $(u_n)^2 = u_{n-1} \cdot u_{n+1}$ for any $n \ge 2$

Section D: Geometric Series

- 16. Calculate the sum of these geometric series:
 - (a) $5 + 15 + 45 + 135 + \dots$ (first 7 terms)
 - (b) $1 4 + 16 64 + \dots$ (first 8 terms)
 - (c) $\frac{3}{4} + \frac{3}{8} + \frac{3}{16} + \frac{3}{32} + \dots$ (first 10 terms)
 - (d) $80 + 72 + 64.8 + 58.32 + \dots$ (first 12 terms)
- 17. A geometric series has first term 8 and common ratio $\frac{3}{4}$.
 - (a) Find the sum of the first 12 terms
 - (b) Find the smallest value of n for which $S_n \geq 30$
 - (c) Calculate the sum to infinity
 - (d) Find how many terms are needed for the sum to be within 0.1 of the sum to infinity
- 18. The sum of the first n terms of a geometric series is $S_n = 4(3^n 1)$.
 - (a) Find the first term u_1

- (b) Find u_2 and u_3
- (c) Determine the common ratio
- (d) Find the general term u_n
- (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 19. Evaluate these infinite geometric series:
 - (a) $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$
 - (b) $4-2+1-\frac{1}{2}+\dots$
 - (c) $\frac{5}{6} + \frac{5}{18} + \frac{5}{54} + \frac{5}{162} + \dots$
 - (d) $0.4 + 0.04 + 0.004 + 0.0004 + \dots$
- 20. A geometric series has $S_4 = 30$ and $S_8 = 510$.
 - (a) Set up equations for the first term and common ratio
 - (b) Solve to find a and r
 - (c) Calculate S_{12}
 - (d) Find the sum to infinity (if it exists)
 - (e) Determine the first term to exceed 2000

Section E: Sigma Notation

- 21. Evaluate these sums:
 - (a) $\sum_{r=1}^{12} (3r+1)$
 - (b) $\sum_{r=1}^{25} (4r-3)$

 - (c) $\sum_{r=1}^{18} r^2$ (d) $\sum_{r=1}^{10} (2r^2 + r)$
- 22. Express these series using sigma notation:
 - (a) $7 + 11 + 15 + 19 + \ldots + 43$
 - (b) $3 + 12 + 48 + 192 + \ldots + 12288$
 - (c) $2^3 + 3^3 + 4^3 + \ldots + 12^3$
 - (d) $\frac{1}{3} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + \dots + \frac{1}{80}$
- 23. Use the standard formulae to evaluate:
 - (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$: Find $\sum_{r=1}^{75} r$
 - (b) $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$: Find $\sum_{r=1}^{25} r^2$
 - (c) $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$: Find $\sum_{r=1}^{12} r^3$
 - (d) $\sum_{r=1}^{40} (3r^2 2r + 1)$
- 24. Simplify these expressions:
 - (a) $\sum_{r=1}^{n} (kr+c)$ in terms of k, c, and n
 - (b) $\sum_{r=1}^{n} (2r^2 3r + 1)$
 - (c) $\sum_{r=1}^{n} (r+2)^2$
 - (d) $\sum_{r=1}^{n} r(2r-1)$
- 25. Prove these results:

(a)
$$\sum_{r=1}^{n} (3r-2) = \frac{3n^2+n}{2}$$

(b)
$$\sum_{r=1}^{n} r(r+2) = \frac{n(n+1)(n+5)}{3}$$

(c)
$$\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{n}{2n+1}$$

(d)
$$\sum_{r=1}^{n} (r^2 - (r-1)^2) = n$$

Section F: Binomial Expansion - Integer Powers

26. Expand using the binomial theorem:

(a)
$$(x+3)^5$$

(b)
$$(3x-2)^4$$

(c)
$$(2-x)^6$$

(d)
$$(2x + \frac{1}{x})^5$$

27. Find the specified terms in these expansions:

(a) The coefficient of
$$x^4$$
 in $(3x+1)^8$

(b) The coefficient of
$$x^6$$
 in $(x-3)^9$

(c) The constant term in
$$(x^3 + \frac{1}{x})^8$$

(d) The coefficient of
$$x^{-3}$$
 in $(3x - \frac{2}{x^2})^9$

28. Use the binomial theorem to evaluate:

(a)
$$(1.03)^4$$
 to 6 decimal places

(b)
$$(0.97)^5$$
 to 5 decimal places

(c)
$$(1.05)^3$$
 exactly

(d)
$$98^4$$
 by writing it as $(100-2)^4$

29. In the expansion of $(1 + bx)^m$:

(a) The coefficient of x is 15 and the coefficient of
$$x^2$$
 is 90. Find b and m.

(b) Find the coefficient of
$$x^3$$

(d) For what values of
$$x$$
 does the expansion converge?

30. The coefficient of x^k in the expansion of $(1+x)^m$ is $\binom{m}{k}$.

(a) Show that
$$\binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \ldots + \binom{m}{m} = 2^m$$

(b) Prove that
$$\binom{m}{k} = \binom{m-1}{k-1} + \binom{m-1}{k}$$

(c) Use this identity to find
$$\binom{8}{3}$$
 from known values

(d) Show that
$$\binom{m}{0} - \binom{m}{1} + \binom{m}{2} - \ldots + (-1)^m \binom{m}{m} = 0$$
 for $m \ge 1$

Section G: Binomial Expansion - Non-Integer Powers

31. Expand these expressions up to and including the term in x^3 :

(a)
$$(1+x)^{-1/2}$$

(b)
$$(1-x)^{-2}$$

(c)
$$(1+3x)^{1/3}$$

(d)
$$(1-2x)^{-1/2}$$

- 32. Find the first four terms in the expansion of:
 - (a) $(9+x)^{1/2}$
 - (b) $(16-x)^{-1/2}$
 - (c) $\frac{1}{(2+x)^2}$
 - (d) $\sqrt{4-3x}$
- 33. State the range of values of x for which these expansions are valid:
 - (a) $(1+4x)^{-1} = 1 4x + 16x^2 64x^3 + \dots$
 - (b) $(1-3x)^{1/2} = 1 \frac{3x}{2} \frac{9x^2}{8} \frac{9x^3}{16} \dots$
 - (c) $(3+x)^{-1} = \frac{1}{3} \frac{x}{9} + \frac{x^2}{27} \frac{x^3}{81} + \dots$
 - (d) $\frac{1}{\sqrt{9-x}} = \frac{1}{3} + \frac{x}{54} + \frac{x^2}{1458} + \dots$
- 34. Use binomial expansions to find approximations:
 - (a) $\sqrt{1.04}$ to 5 decimal places
 - (b) $\frac{1}{\sqrt{0.96}}$ to 4 decimal places
 - (c) $(1.03)^{-3}$ to 6 decimal places
 - (d) $\sqrt[3]{1.06}$ to 5 decimal places
- 35. Find the coefficient of x^2 in the expansion of:
 - (a) $(1+x)^{-1/2}(1+x)^{1/2}$
 - (b) $(1+3x)^{-1}(1-x)^2$
 - (c) $\frac{1-x}{\sqrt{1+x}}$
 - (d) $(1-x+x^2)(1+x)^{-2}$

Section H: Mixed Series and Advanced Topics

- 36. A sequence is defined by $u_1 = 3$ and $u_{n+1} = 2u_n + 5$ for $n \ge 1$.
 - (a) Find the first five terms
 - (b) Prove by induction that $u_n = 8 \times 2^{n-1} 5$
 - (c) Calculate u_{12}
 - (d) Find the sum of the first 10 terms
- 37. The sequence $\{w_n\}$ satisfies $w_n = 3w_{n-1} 2w_{n-2}$ with $w_1 = 4$ and $w_2 = 7$.
 - (a) Find the first six terms
 - (b) Show that the characteristic equation is $r^2 3r + 2 = 0$
 - (c) Solve to find r = 2 and r = 1
 - (d) Use the general solution $w_n = A \cdot 2^n + B \cdot 1^n$ to find A and B
 - (e) Write the explicit formula for w_n
- 38. Consider the series $\sum_{r=1}^{\infty} \frac{1}{r(r+2)}$.
 - (a) Use partial fractions to show that $\frac{1}{r(r+2)} = \frac{1}{2} \left(\frac{1}{r} \frac{1}{r+2} \right)$
 - (b) Write out the first few terms and observe the telescoping pattern
 - (c) Find the sum of the first n terms

- (d) Determine the sum to infinity
- 39. The Lucas sequence is defined by $L_1 = 1$, $L_2 = 3$, and $L_n = L_{n-1} + L_{n-2}$ for $n \ge 3$.
 - (a) Write down the first 10 terms
 - (b) Calculate the ratios $\frac{L_{n+1}}{L_n}$ for $n=1,2,3,\ldots,9$
 - (c) Show that these ratios approach the golden ratio $\phi = \frac{1+\sqrt{5}}{2}$
 - (d) Prove that $L_n = \phi^n + (-\phi)^{-n}$ for all $n \ge 1$
- 40. A pendulum is released from rest. On each swing, it travels $\frac{4}{5}$ of the distance of the previous swing. The first swing covers 2 meters.
 - (a) Find the distance covered on the 8th swing
 - (b) Calculate the total distance traveled when the pendulum comes to rest
 - (c) Find the number of swings needed to cover 95% of the total distance
 - (d) Model the swing distances as a geometric sequence and analyze its convergence

Section I: Applications and Problem Solving

- 41. A mortgage of £150,000 is taken out at 6% annual compound interest. Monthly payments of £1200 are made.
 - (a) Set up a recurrence relation for the amount owed after n months
 - (b) Find the amount owed after 24 months
 - (c) Determine how many months it takes to pay off the mortgage
 - (d) Calculate the total interest paid
- 42. A population of rabbits grows according to the model: each pair produces 4 offspring every 2 months. Initially, there are 10 pairs.
 - (a) Model the population as a geometric sequence
 - (b) Find the population after 18 months
 - (c) After how many months will the population exceed 100,000 pairs?
 - (d) If predation reduces the population by 15% every 6 months, modify the model and find the population after 24 months
- 43. A fractal pattern is created using triangles with areas forming a geometric sequence: 16, 4, 1, $\frac{1}{4}$, ... cm².
 - (a) Find the total area of all the triangles
 - (b) If each triangle has a perimeter proportional to the square root of its area, find the total perimeter
 - (c) If paint costs £5 per cm² to apply, find the total cost to paint all triangles
 - (d) What fraction of the total area is occupied by the first 4 triangles?
- 44. A chemical reaction follows first-order kinetics. Initially, 200 mg of reactant is present. Every minute, 15% decomposes, and 5 mg of fresh reactant is added.
 - (a) Set up a recurrence relation for the amount after n minutes
 - (b) Find the amount present after 10 minutes
 - (c) Determine the long-term equilibrium amount
 - (d) After how many minutes is the amount within 2% of the equilibrium?

- 45. A retirement plan involves saving £2000 in the first year, £2200 in the second year, £2420 in the third year, and so on (increasing by 10% each year) for 30 years.
 - (a) Model the annual savings as a geometric sequence
 - (b) Find the total amount saved over 30 years
 - (c) If each year's savings earns 7% annual compound interest from when it's deposited, find the total value after 30 years
 - (d) Compare this with saving £2000 annually at 7% compound interest for 30 years

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$