A Level Pure Mathematics Practice Test 6: Sequences and Series

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Arithmetic Sequences

- 1. For the arithmetic sequence $15, 23, 31, 39, 47, \ldots$:
 - (a) Find the first term a and common difference d
 - (b) Find the general term u_n
 - (c) Calculate u_{24}
 - (d) Find which term equals 207
 - (e) Determine if 350 is a term in the sequence
- 2. An arithmetic sequence has $u_8 = 47$ and $u_{14} = 77$.
 - (a) Find the first term and common difference
 - (b) Write the general term u_n
 - (c) Calculate u_{28}
 - (d) Find the first term to exceed 140
 - (e) Determine the largest value of n for which $u_n < 220$
- 3. The *n*th term of an arithmetic sequence is $u_n = 8n 6$.
 - (a) Write down the first five terms
 - (b) Find the common difference
 - (c) Calculate u_{42}
 - (d) Find the sum of the first 32 terms
 - (e) For what value of n is $u_n = 218$?
- 4. Three numbers t-6g, t, and t+6g are in arithmetic progression with sum 84 and product 24192.
 - (a) Find the value of t
 - (b) Set up an equation for g
 - (c) Solve to find the values of g
 - (d) Write down the three numbers for each case
- 5. An arithmetic sequence has first term a and common difference d.

- (a) If three terms u_i , u_j , u_k satisfy $u_i + u_k = 2u_j$, prove that i + k = 2j
- (b) Show that the reciprocals $\frac{1}{u_p}$, $\frac{1}{u_q}$, $\frac{1}{u_r}$ are in harmonic progression when u_p , u_q , u_r are in arithmetic progression
- (c) Prove that if $S_m = S_n$ where $m \neq n$, then the arithmetic mean of all terms from u_1 to u_{m+n} equals the common value $\frac{S_m}{m} = \frac{S_n}{n}$
- (d) If the sum of the first p terms is α times the sum of the first q terms, find a relationship between p, q, α , a, and d

Section B: Arithmetic Series

- 6. Calculate the sum of these arithmetic series:
 - (a) $12 + 20 + 28 + 36 + \dots$ (first 26 terms)
 - (b) $45 + 40 + 35 + 30 + \dots$ (first 20 terms)
 - (c) $\frac{4}{9} + \frac{7}{9} + \frac{10}{9} + \frac{13}{9} + \dots$ (first 32 terms)
 - (d) The series with first term 24, last term 168, and 25 terms
- 7. An arithmetic series has first term 15 and common difference 9.
 - (a) Find the sum of the first 28 terms
 - (b) Find the smallest value of n for which $S_n \ge 4000$
 - (c) If the sum of the first n terms is 3192, find n
 - (d) Express S_n in terms of n
- 8. The sum of the first n terms of an arithmetic series is $S_n = 6n^2 4n$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common difference
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 9. Find the sum of:
 - (a) All multiples of 13 between 200 and 1500
 - (b) All integers from 1 to 200 that are divisible by 9
 - (c) All odd integers from 25 to 195
 - (d) The integers from 1 to 100 that are divisible by 6 or 8
- 10. An arithmetic series has $S_{18} = 738$ and $S_{26} = 1378$.
 - (a) Find the first term and common difference
 - (b) Calculate S_{40}
 - (c) Find the 22nd term
 - (d) Determine when the sum first exceeds 5000

Section C: Geometric Sequences

- 11. For the geometric sequence $7, 28, 112, 448, 1792, \ldots$:
 - (a) Find the first term a and common ratio r
 - (b) Find the general term u_n
 - (c) Calculate u_{14}
 - (d) Find which term equals 7168
 - (e) Determine if 458752 is a term in the sequence
- 12. A geometric sequence has $u_7 = 192$ and $u_{10} = 1536$.
 - (a) Find the common ratio r
 - (b) Find the first term a
 - (c) Write the general term u_n
 - (d) Calculate u_{15}
 - (e) Find the first term to exceed 1000000
- 13. The *n*th term of a geometric sequence is $u_n = 12 \times 4^{n-1}$.
 - (a) Write down the first five terms
 - (b) Find the common ratio
 - (c) Calculate u_{11}
 - (d) Find the sum of the first 7 terms
 - (e) For what value of n is $u_n = 12288$?
- 14. Three numbers $\frac{w}{v}$, w, and wv are in geometric progression with sum 182 and product 4096.
 - (a) Find the value of w
 - (b) Set up an equation for v
 - (c) Solve to find the values of v
 - (d) Write down the three numbers for each case
- 15. A geometric sequence has first term a and common ratio r.
 - (a) If the sum of the first n terms is S_n and the sum of their squares is T_n , find a relationship between S_n , T_n , a, and r
 - (b) Show that if three terms u_m , u_n , u_p are in arithmetic progression, then $r^{n-m} + r^{p-n} = 2$ when m < n < p
 - (c) Prove that the sequence of ratios $\frac{u_2}{u_1}$, $\frac{u_3}{u_2}$, $\frac{u_4}{u_3}$, ... is constant
 - (d) If P_n represents the product of the first n terms, show that $P_n^2 = (u_1 \cdot u_n)^n$ when n is even

Section D: Geometric Series

- 16. Calculate the sum of these geometric series:
 - (a) $13 + 39 + 117 + 351 + \dots$ (first 11 terms)
 - (b) $5 20 + 80 320 + \dots$ (first 10 terms)
 - (c) $\frac{4}{9} + \frac{4}{27} + \frac{4}{81} + \frac{4}{243} + \dots$ (first 8 terms)
 - (d) $144 + 108 + 81 + 60.75 + \dots$ (first 18 terms)
- 17. A geometric series has first term 21 and common ratio $\frac{5}{7}$.

- (a) Find the sum of the first 30 terms
- (b) Find the smallest value of n for which $S_n \ge 48$
- (c) Calculate the sum to infinity
- (d) Find how many terms are needed for the sum to be within 0.01 of the sum to infinity
- 18. The sum of the first n terms of a geometric series is $S_n = 8(7^n 1)$.
 - (a) Find the first term u_1
 - (b) Find u_2 and u_3
 - (c) Determine the common ratio
 - (d) Find the general term u_n
 - (e) Verify using the formula $u_n = S_n S_{n-1}$ for $n \ge 2$
- 19. Evaluate these infinite geometric series:
 - (a) $1 + \frac{4}{9} + \frac{16}{81} + \frac{64}{729} + \dots$
 - (b) $15 7.5 + 3.75 1.875 + \dots$
 - (c) $\frac{11}{12} + \frac{11}{60} + \frac{11}{300} + \frac{11}{1500} + \dots$
 - (d) $0.8 + 0.08 + 0.008 + 0.0008 + \dots$
- 20. A geometric series has $S_8 = 510$ and $S_{16} = 65790$.
 - (a) Set up equations for the first term and common ratio
 - (b) Solve to find a and r
 - (c) Calculate S_{24}
 - (d) Find the sum to infinity (if it exists)
 - (e) Determine the first term to exceed 100000

Section E: Sigma Notation

- 21. Evaluate these sums:
 - (a) $\sum_{r=1}^{22} (7r+5)$
 - (b) $\sum_{r=1}^{45} (8r-7)$

 - (c) $\sum_{r=1}^{36} r^2$ (d) $\sum_{r=1}^{20} (6r^2 + 4r)$
- 22. Express these series using sigma notation:
 - (a) $14 + 22 + 30 + 38 + \ldots + 78$
 - (b) $10 + 50 + 250 + 1250 + \ldots + 31250$
 - (c) $4^3 + 6^3 + 8^3 + 10^3 + \ldots + 22^3$
 - (d) $\frac{1}{7} + \frac{1}{18} + \frac{1}{33} + \frac{1}{52} + \ldots + \frac{1}{138}$
- 23. Use the standard formulae to evaluate:
 - (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$: Find $\sum_{r=1}^{105} r$
 - (b) $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$: Find $\sum_{r=1}^{45} r^2$
 - (c) $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$: Find $\sum_{r=1}^{30} r^3$
 - (d) $\sum_{r=1}^{55} (7r^2 6r + 5)$

- 24. Simplify these expressions:
 - (a) $\sum_{r=1}^{n} (wr + z)$ in terms of w, z, and n
 - (b) $\sum_{r=1}^{n} (6r^2 4r + 2)$
 - (c) $\sum_{r=1}^{n} (5r+3)^2$
 - (d) $\sum_{r=1}^{n} r(6r+4)$
- 25. Prove these results:
 - (a) $\sum_{r=1}^{n} (7r 6) = \frac{n(7n-5)}{2}$
 - (b) $\sum_{r=1}^{n} r(r+6) = \frac{n(n+1)(n+17)}{3}$
 - (c) $\sum_{r=1}^{n} \frac{1}{(6r-5)(6r+1)} = \frac{n}{6n+1}$
 - (d) $\sum_{r=1}^{n} ((r+4)^2 (r+3)^2) = n(n+9)$

Section F: Binomial Expansion - Integer Powers

- 26. Expand using the binomial theorem:
 - (a) $(x+7)^7$
 - (b) $(7x-6)^5$
 - (c) $(6-5x)^4$
 - (d) $(6x + \frac{5}{x})^7$
- 27. Find the specified terms in these expansions:
 - (a) The coefficient of x^8 in $(7x+5)^{12}$
 - (b) The coefficient of x^{10} in $(5x-4)^{13}$
 - (c) The constant term in $(x^7 + \frac{6}{x^5})^4$
 - (d) The coefficient of x^{-4} in $(7x^5 \frac{4}{x^3})^9$
- 28. Use the binomial theorem to evaluate:
 - (a) $(1.07)^8$ to 6 decimal places
 - (b) $(0.92)^7$ to 5 decimal places
 - (c) $(1.04)^{10}$ exactly
 - (d) 99^6 by writing it as $(100-1)^6$
- 29. In the expansion of $(1 + gx)^h$:
 - (a) The coefficient of x is 27 and the coefficient of x^2 is 351. Find g and h.
 - (b) Find the coefficient of x^3
 - (c) Write out the first four terms of the expansion
 - (d) For what values of x does the expansion converge?
- 30. The coefficient of x^j in the expansion of $(1+x)^h$ is $\binom{h}{j}$.
 - (a) Show that $\sum_{j=0}^{h} {h \choose j} \cdot 5^j = 6^h$
 - (b) Prove that $\binom{h}{1} + 2\binom{h}{2} + 3\binom{h}{3} + \ldots + h\binom{h}{h} = h \cdot 2^{h-1}$
 - (c) Use the hockey stick identity to show that $\binom{r}{r} + \binom{r+1}{r} + \binom{r+2}{r} + \ldots + \binom{n}{r} = \binom{n+1}{r+1}$
 - (d) Show that $\sum_{j=0}^{h} (-1)^{j} {h \choose j} \cdot j^{3} = 0$ for $h \geq 3$

Section G: Binomial Expansion - Non-Integer Powers

- 31. Expand these expressions up to and including the term in x^3 :
 - (a) $(1+x)^{5/6}$
 - (b) $(1-x)^{-6}$
 - (c) $(1+8x)^{3/4}$
 - (d) $(1-9x)^{-3/4}$
- 32. Find the first four terms in the expansion of:
 - (a) $(64+x)^{1/2}$
 - (b) $(49-x)^{-1/2}$
 - (c) $\frac{1}{(6+x)^6}$
 - (d) $\sqrt{36-7x}$
- 33. State the range of values of x for which these expansions are valid:
 - (a) $(1+8x)^{-1} = 1 8x + 64x^2 512x^3 + \dots$
 - (b) $(1-7x)^{1/2} = 1 \frac{7x}{2} \frac{49x^2}{8} \frac{343x^3}{16} \dots$
 - (c) $(9+x)^{-1} = \frac{1}{9} \frac{x}{81} + \frac{x^2}{729} \frac{x^3}{6561} + \dots$
 - (d) $\frac{1}{\sqrt{49-x}} = \frac{1}{7} + \frac{x}{686} + \frac{3x^2}{33614} + \dots$
- 34. Use binomial expansions to find approximations:
 - (a) $\sqrt{1.12}$ to 5 decimal places
 - (b) $\frac{1}{\sqrt{0.80}}$ to 4 decimal places
 - (c) $(1.07)^{-7}$ to 6 decimal places
 - (d) $\sqrt[3]{1.18}$ to 5 decimal places
- 35. Find the coefficient of x^2 in the expansion of:
 - (a) $(1+x)^{5/6}(1-x)^{1/6}$
 - (b) $(1+7x)^{-1}(1+5x)^2$
 - (c) $\frac{1+5x}{\sqrt{1-x}}$
 - (d) $(1+4x-3x^2)(1+x)^{-6}$

Section H: Mixed Series and Advanced Topics

- 36. A sequence is defined by $u_1 = 7$ and $u_{n+1} = 6u_n 17$ for $n \ge 1$.
 - (a) Find the first five terms
 - (b) Prove by induction that $u_n = \frac{13 \times 6^{n-1} + 17}{5}$
 - (c) Calculate u_{22}
 - (d) Find the sum of the first 20 terms
- 37. The sequence $\{a_n\}$ satisfies $a_n = 7a_{n-1} 10a_{n-2}$ with $a_1 = 5$ and $a_2 = 15$.
 - (a) Find the first six terms
 - (b) Show that the characteristic equation is $r^2 7r + 10 = 0$
 - (c) Solve to find r = 5 and r = 2

- (d) Use the general solution $a_n = A \cdot 5^n + B \cdot 2^n$ to find A and B
- (e) Write the explicit formula for a_n
- 38. Consider the series $\sum_{r=1}^{\infty} \frac{4}{r(r+6)}$.
 - (a) Use partial fractions to show that $\frac{4}{r(r+6)} = \frac{2}{3} \left(\frac{1}{r} \frac{1}{r+6} \right)$
 - (b) Write out the first few terms and observe the telescoping pattern
 - (c) Find the sum of the first n terms
 - (d) Determine the sum to infinity
- 39. The Perrin sequence is defined by $P_1 = 3$, $P_2 = 0$, $P_3 = 2$, and $P_n = P_{n-2} + P_{n-3}$ for $n \ge 4$.
 - (a) Write down the first 18 terms
 - (b) Calculate the ratios $\frac{P_{n+1}}{P_n}$ for several consecutive terms
 - (c) Investigate the convergence behavior of these ratios
 - (d) Study the characteristic equation $x^3 x 1 = 0$ and its dominant root
- 40. A swinging lamp gradually loses energy. Each swing covers $\frac{4}{5}$ of the distance of the previous swing. The first swing covers 15 cm.
 - (a) Find the distance covered on the 25th swing
 - (b) Calculate the total distance traveled when the lamp comes to rest
 - (c) Find the number of swings needed to cover 98% of the total distance
 - (d) If the period of each swing is proportional to the square root of its amplitude, find the total time relative to the first swing

Section I: Applications and Problem Solving

- 41. A home mortgage of £200,000 is taken out at 5.5% annual compound interest. Monthly payments of £1400 are made.
 - (a) Set up a recurrence relation for the amount owed after n months
 - (b) Find the amount owed after 36 months
 - (c) Determine how many months it takes to pay off the mortgage
 - (d) Calculate the total amount paid and the interest over the life of the loan
- 42. A computer virus spreads through a network. Each infected computer infects 6 others every 3 hours. Initially, 2 computers are infected.
 - (a) Model the number of infected computers as a geometric sequence
 - (b) Find the number of infected computers after 30 hours
 - (c) After how many hours will more than 50,000 computers be infected?
 - (d) If antivirus software reduces the infection rate to 2.5 after 18 hours, find the total infected after 48 hours
- 43. A fractal tree grows with branches having lengths forming the sequence: 162, 54, 18, 6, 2, $\frac{2}{3}$, ... cm.
 - (a) Find the total length of all the branches
 - (b) If each branch has cross-sectional area proportional to its length with constant 0.1, find the total cross-sectional area
 - (c) If pruning costs £2 per cm of branch length, find the total pruning cost

- (d) What percentage of the total length is contributed by the first 4 generations?
- 44. A filtration system processes contaminated water. Initially, there are 900 units of contamination. Every cycle, 18% is removed, and 60 units are added from new input.
 - (a) Set up a recurrence relation for the contamination level after n cycles
 - (b) Find the contamination level after 25 cycles
 - (c) Determine the long-term equilibrium contamination level
 - (d) After how many cycles is the contamination within 1% of the equilibrium?
- 45. An investment scheme involves investing £6000 in the first year, £6600 in the second year, £7260 in the third year, and so on (increasing by 10% each year) for 25 years.
 - (a) Model the annual investments as a geometric sequence
 - (b) Find the total amount invested over 25 years
 - (c) If each investment earns 9% annual compound interest from when it's made, find the total value after 25 years
 - (d) Compare this with investing £6000 annually at 9% compound interest for 25 years

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$