A Level Pure Mathematics Practice Test 3: Differential Equations

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Introduction and Theory

- 1. Define and distinguish between:
 - (a) Linear vs. nonlinear differential equations
 - (b) Homogeneous vs. non-homogeneous equations
 - (c) Complete vs. general solutions
 - (d) Initial value vs. boundary value problems
 - (e) Stable vs. unstable equilibrium points
 - (f) Phase portraits and trajectories
- 2. Classify by order, degree, and type:

(a)
$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = x$$

(b)
$$\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} - y = \sin x$$

(c)
$$\left(\frac{dy}{dx}\right)^2 + xy = e^x$$

(d)
$$\cos\left(\frac{dy}{dx}\right) = x + y$$

(e)
$$x^3 \frac{d^3y}{dx^3} - x \frac{dy}{dx} + 2y = 0$$

(f)
$$\frac{dy}{dx} + xy^2 = x^3$$
 (Riccati equation)

3. Verify these solution pairs:

(a)
$$y = \frac{C}{x^2}$$
 satisfies $x \frac{dy}{dx} + 2y = 0$

(b)
$$y = Ce^{-x^2/2}$$
 satisfies $\frac{dy}{dx} + xy = 0$

(c)
$$y = C_1 \cos(2x) + C_2 \sin(2x)$$
 satisfies $\frac{d^2y}{dx^2} + 4y = 0$

(d)
$$y = e^{2x}(C_1 + C_2x)$$
 satisfies $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$

4. Derive differential equations for:

(a)
$$y = Ce^{5x}$$
 (exponential family)

(b)
$$y = C_1 \sinh x + C_2 \cosh x$$
 (hyperbolic functions)

1

(c)
$$y^2 = 4ax$$
 (parabolas with vertex at origin)

- (d) xy = C (rectangular hyperbolas)
- 5. Analyze equilibrium and stability:
 - (a) Find equilibria for $\frac{dy}{dx} = y(y-1)(y-2)$
 - (b) Determine stability of each equilibrium point
 - (c) Sketch the direction field and solution curves
 - (d) Describe long-term behavior from different initial conditions

Section B: Integration Techniques

- 6. Solve by direct integration:
 - (a) $\frac{dy}{dx} = 5x^4 3x^2 + 1$
 - (b) $\frac{dy}{dx} = e^{-4x} + 2$
 - (c) $\frac{dy}{dx} = \frac{4}{2x-3}$
 - (d) $\frac{dy}{dx} = \sec^2(3x)$
 - (e) $\frac{dy}{dx} = \frac{3x^2}{x^3+8}$
 - (f) $\frac{dy}{dx} = x^2 e^{x^3}$
- 7. Find solutions with specified conditions:
 - (a) $\frac{dy}{dx} = 12x^3 6x$, y(2) = 10
 - (b) $\frac{dy}{dx} = 4e^{-2x}$, y(0) = 3
 - (c) $\frac{dy}{dx} = \sin(2x), \ y(\pi/4) = 5$
 - (d) $\frac{dy}{dx} = \frac{4}{x-1}$, $y(2) = \ln 3$ (for x > 1)
 - (e) $\frac{dy}{dx} = 2x\sqrt{x^2 4}, y(3) = 0$
- 8. Second-order problems:
 - (a) $\frac{d^2y}{dx^2} = 6x^2 + 4$, y(0) = 3, y'(0) = -2
 - (b) $\frac{d^2y}{dx^2} = e^{2x}$, y(0) = 1, y'(0) = 2
 - (c) $\frac{d^3y}{dx^3} = 24x$, y(0) = 1, y'(0) = 0, y''(0) = 3
 - (d) $\frac{d^2y}{dx^2} = -\sin x$, y(0) = 2, $y(\pi/2) = 1$
- 9. Motion and physics problems:
 - (a) A particle's acceleration is a = 8t 12. Find v(t) and s(t) if v(0) = 5, s(0) = -2.
 - (b) An object is thrown upward with initial velocity 25 m/s from height 30m. Find its trajectory.
 - (c) A spring system has $\frac{d^2x}{dt^2} = -25x$. Find x(t) if x(0) = 3, $\dot{x}(0) = -5$.
 - (d) Find the curve whose second derivative is 6 and passes through (0,1) with slope 2.
- 10. Applied rate problems:
 - (a) Oil leaks from a tank at rate $\frac{dV}{dt} = -0.5t^2$ L/min. Find volume lost in 4 hours.
 - (b) Bacteria multiply at rate $\frac{dN}{dt} = 0.3N$. If N(0) = 1000, find N(t).
 - (c) Snow melts at rate $\frac{dh}{dt} = -k\sqrt{h}$ where k > 0. Solve for h(t).
 - (d) Temperature rises at rate $\frac{dT}{dt} = 2\sin(t/3)$ °C/hour. Find temperature change over 6 hours.

Section C: Variable Separation Methods

11. Solve these separable equations:

(a)
$$\frac{dy}{dx} = 4xy^3$$

(b)
$$\frac{dy}{dx} = \frac{y^2}{x}$$

(c)
$$\frac{dy}{dx} = e^{2x-y}$$

(d)
$$\frac{dy}{dx} = \frac{x \sin x}{y^2}$$

(e)
$$\frac{dy}{dx} = \frac{\tan x}{\sec y}$$

(f)
$$\frac{dy}{dx} = \frac{x^3y}{x^4+16}$$

12. Particular solutions:

(a)
$$\frac{dy}{dx} = 5xy, y(0) = 3$$

(b)
$$\frac{dy}{dx} = \frac{4y}{x}$$
, $y(1) = 6$ (for $x > 0$)

(c)
$$\frac{dy}{dx} = \frac{x^2}{y^3}$$
, $y(0) = 4$

(d)
$$\frac{dy}{dx} = y(4-y), y(0) = 1$$

(e)
$$\frac{dy}{dx} = \frac{2x}{\sqrt{9-y^2}}, y(0) = 0$$

13. Advanced separable forms:

(a)
$$(4+y^2)\frac{dy}{dx} = 3xy$$

(b)
$$\frac{dy}{dx} = \frac{ye^{3x}}{x^3+1}$$

(c)
$$\sin^2 y \frac{dy}{dx} = \cos x$$

(d)
$$\frac{dy}{dx} = \frac{x^2(4+y^2)}{y(1+x^3)}$$

(e)
$$e^{y} \frac{dy}{dx} = x^{2}$$

14. Real-world applications:

- (a) Exponential growth: $\frac{dP}{dt} = 0.025P$, P(0) = 800. Find doubling time.
- (b) Carbon dating: $\frac{dN}{dt} = -N$ with half-life 5730 years. Find age of artifact with 60% carbon remaining.
- (c) Cooling law: $\frac{dT}{dt}=-0.1(T-18)$. Coffee cools from 85°C to 65°C in 4 minutes. Find temperature after 10 minutes.
- (d) Logistic growth: $\frac{dP}{dt} = rP(1 \frac{P}{K})$ with r = 0.1, K = 1000, P(0) = 50.

15. Separability analysis:

(a)
$$\frac{dy}{dx} = xy + y$$
 (separable)

(b)
$$\frac{dy}{dx} = x + y$$
 (not separable)

(c)
$$\frac{dy}{dx} = \sin(xy)$$
 (not separable)

(d)
$$\frac{dy}{dx} = e^{x-2y}$$
 (separable)

(e)
$$\frac{dy}{dx} = \frac{x^2y^2}{1+x^3}$$
 (separable)

Section D: First-Order Linear Equations

16. Solve using integrating factor method:

(a)
$$\frac{dy}{dx} + 5y = e^{4x}$$

(b)
$$\frac{dy}{dx} - 3y = 2x^2$$

(c)
$$\frac{dy}{dx} + \frac{4y}{x} = x^2$$
 (for $x > 0$)

(d)
$$\frac{dy}{dx} + y \cos x = \sin x \cos x$$

(e)
$$x \frac{dy}{dx} + 4y = x^2$$

(f)
$$\frac{dy}{dx} + 2xy = 3xe^{-x^2}$$

17. Initial value problems:

(a)
$$\frac{dy}{dx} + 4y = 8e^{2x}$$
, $y(0) = 3$

(b)
$$\frac{dy}{dx} - 2y = 6x$$
, $y(0) = 2$

(c)
$$\frac{dy}{dx} + 3y = 9$$
, $y(0) = 1$

(d)
$$\frac{dy}{dx} + \frac{2y}{x} = 4x$$
, $y(1) = 5$ (for $x > 0$)

18. Advanced linear equations:

(a)
$$\frac{dy}{dx} + y \sec x = \tan x \sec x$$

(b)
$$(x^2+1)\frac{dy}{dx} + 2xy = x^2+1$$

(c)
$$\frac{dy}{dx} + \frac{3y}{x^2+1} = \frac{3x}{x^2+1}$$

(d)
$$x^3 \frac{dy}{dx} + 2x^2 y = x^5 \text{ (for } x > 0)$$

19. Practical applications:

- (a) RC circuit: $RC\frac{dq}{dt} + q = CV_0$ with constant voltage. Find charge q(t).
- (b) Tank mixing: 200L tank, brine enters at 3 L/min (2 kg salt/L), mixture exits at 3 L/min. Find salt content.
- (c) Savings account: $\frac{dA}{dt} = 0.06A 1200$ (6% interest, £1200 annual withdrawal).
- (d) Terminal velocity: $m\frac{dv}{dt} + bv = mg$ for falling object with drag.

20. Method verification:

(a) Solve
$$\frac{dy}{dx} = 4xy + 4x$$
 by separation

(b) Solve same equation as linear:
$$\frac{dy}{dx} - 4xy = 4x$$

- (c) Show solutions are equivalent
- (d) Compare computational efficiency of each method

Section E: Homogeneous Second-Order Equations

21. Auxiliary equation method:

(a)
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 8y = 0$$

(b)
$$\frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 25y = 0$$

(c)
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 25y = 0$$

(d)
$$\frac{d^2y}{dx^2} + 49y = 0$$

(e)
$$\frac{d^2y}{dx^2} - 36y = 0$$

(f)
$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 17y = 0$$

22. Root classification and solutions:

(a)
$$m^2 - 8m + 15 = 0$$
 (distinct real roots)

(b)
$$m^2 + 12m + 36 = 0$$
 (repeated real root)

(c)
$$m^2 + 4m + 13 = 0$$
 (complex conjugate roots)

(d)
$$m^2 - 64 = 0$$
 (distinct real roots)

(e)
$$m^2 + 9 = 0$$
 (pure imaginary roots)

23. Initial value problems:

(a)
$$\frac{d^2y}{dx^2} - 9\frac{dy}{dx} + 20y = 0$$
, $y(0) = 2$, $y'(0) = 3$

(b)
$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0, y(0) = 1, y'(0) = -2$$

(c)
$$\frac{d^2y}{dx^2} + 25y = 0$$
, $y(0) = 0$, $y'(0) = 5$

(d)
$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 17y = 0, y(0) = 1, y'(0) = 2$$

24. Solution behavior analysis:

- (a) Exponential growth/decay for real distinct roots
- (b) Oscillatory motion for complex roots
- (c) Critical damping for repeated roots
- (d) Phase relationships and amplitude modulation

25. Higher-order constant coefficient:

(a)
$$\frac{d^3y}{dx^3} - 4\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 2y = 0$$

(b)
$$\frac{d^4y}{dx^4} - 625y = 0$$

(c) General solution structure for nth order equations

Section F: Non-homogeneous Second-Order Equations

26. Undetermined coefficients:

(a)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 18$$

(b)
$$\frac{d^2y}{dx^2} + 25y = 75x^2$$

(c)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 12y = e^{4x}$$

(d)
$$\frac{d^2y}{dx^2} + 16y = \sin(3x)$$

(e)
$$\frac{d^2y}{dx^2} - 16y = 4e^{4x}$$

(f)
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = x^2 + 3$$

27. Resonance situations:

(a)
$$\frac{d^2y}{dx^2} + 25y = \cos(5x)$$
 (resonance)

(b)
$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = e^{3x}$$
 (resonance)

(c)
$$\frac{d^2y}{dx^2} + 4y = \sin(2x)$$
 (resonance)

- (d) Explain the x multiplication rule for resonance
- 28. Complete IVP solutions:

(a)
$$\frac{d^2y}{dx^2} + 9y = 18$$
, $y(0) = 2$, $y'(0) = 0$

(b)
$$\frac{d^2y}{dx^2} - 9y = 18x$$
, $y(0) = 0$, $y'(0) = 3$

(c)
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 4e^{-2x}, y(0) = 1, y'(0) = -1$$

29. Particular integral patterns:

- (a) Polynomial forcing: trial solutions
- (b) Exponential forcing: when to include x factors
- (c) Trigonometric forcing: sine and cosine combinations
- (d) Mixed forcing: products and sums

30. Alternative methods:

- (a) Variation of parameters for $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = \frac{e^x}{x}$
- (b) Green's function approach concept
- (c) Operator methods introduction

Section G: Physical Applications

31. Oscillatory systems:

- (a) Mass-spring: $m\frac{d^2x}{dt^2} + kx = 0$ with x(0) = 4, $\dot{x}(0) = 0$, m = 3 kg, k = 27 N/m
- (b) Find natural frequency, period, and energy
- (c) Pendulum: $\frac{d^2}{dt^2} + \frac{g}{L} = 0$ for small angles
- (d) Torsional oscillations: $I\frac{d^2}{dt^2} + c = 0$

32. Damped systems:

- (a) $m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$ with m = 2, b = 8, k = 8 (overdamped)
- (b) Critical damping: $m=2,\,b=8,\,k=8$ with $x(0)=3,\,\dot{x}(0)=-4$
- (c) Underdamped: m = 1, b = 4, k = 13 with $x(0) = 2, \dot{x}(0) = 0$
- (d) Quality factor and logarithmic decrement

33. Driven oscillations:

- (a) $\frac{d^2x}{dt^2} + 36x = 72\cos(5t)$ with zero initial conditions
- (b) Steady-state response and transient behavior
- (c) Resonance: $\frac{d^2x}{dt^2} + 25x = 50\cos(5t)$
- (d) Frequency response and amplitude curves

34. Electrical systems:

- (a) RLC circuit: $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = V(t)$
- (b) Parameters: $L=0.5~\mathrm{H},\,R=6~,\,C=0.2~\mathrm{F},\,V=15~\mathrm{V}$
- (c) Natural frequency and damping characteristics
- (d) AC response with $V(t) = V_0 \cos(t)$

35. Population and economic dynamics:

- (a) Second-order population model: $\frac{d^2P}{dt^2} + \frac{dP}{dt} + P = K$
- (b) Economic cycles: $\frac{d^2Y}{dt^2} + a\frac{dY}{dt} + bY = G$ (income dynamics)
- (c) Stability and equilibrium analysis
- (d) Phase space interpretation

Section H: Special Methods and Advanced Topics

- 36. Homogeneous equations (first-order):
 - (a) $\frac{dy}{dx} = \frac{3x+2y}{x}$ (substitution $v = \frac{y}{x}$)
 - (b) $\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$
 - (c) $(2x^2 + 3xy)dx + (x^2 + 2xy)dy = 0$
 - (d) Test for homogeneity: degree verification
- 37. Bernoulli equations:
 - (a) $\frac{dy}{dx} + 4y = 2xy^3$ (substitution $v = y^{1-n}$)
 - (b) $x \frac{dy}{dx} + 3y = y^4$
 - (c) $\frac{dy}{dx} \frac{3y}{x} = \frac{y^2}{x^3}$
- 38. Exact equations:
 - (a) $(4x^3 + 3y)dx + (3x + 2y)dy = 0$ (test: $\frac{M}{y} = \frac{N}{x}$)
 - (b) $(e^x \cos y + 2x)dx + (2y e^x \sin y)dy = 0$
 - (c) Integrating factors when not exact
- 39. Reduction techniques:
 - (a) $\frac{d^2y}{dx^2} + \frac{3}{x}\frac{dy}{dx} = 0$ (substitute $v = \frac{dy}{dx}$)
 - (b) $y \frac{d^2y}{dx^2} = 3\left(\frac{dy}{dx}\right)^2$
 - (c) Euler equations: $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0$
- 40. Systems of equations:
 - (a) $\frac{dx}{dt} = 4x + 2y$, $\frac{dy}{dt} = 2x + 4y$
 - (b) Matrix eigenvalue method
 - (c) Phase plane analysis
 - (d) Stability classification

Section I: Comprehensive Modeling Project

- 41. Select one major application and complete full analysis:
 - (a) Epidemic spread: SEIR model with demographics
 - (b) Predator-prey with environmental factors
 - (c) Chemical reactor with multiple reactions
 - (d) Economic growth with technological change
 - (e) Climate dynamics with feedback loops
 - (f) Structural vibrations in engineering

For your chosen project, provide:

- (a) Mathematical derivation from physical principles
- (b) Classification and solution strategy
- (c) Analytical solution where possible
- (d) Numerical methods if needed

- (e) Parameter estimation and validation
- (f) Sensitivity analysis and predictions
- (g) Model limitations and improvements
- (h) Graphical presentation and interpretation

42. Numerical analysis:

- (a) Euler's method for $\frac{dy}{dx} = x^2 + y$, y(0) = 1
- (b) Improved Euler (Heun's method)
- (c) Fourth-order Runge-Kutta method
- (d) Error analysis and step size selection

43. Boundary value problems:

- (a) $\frac{d^2y}{dx^2} + \lambda^2 y = 0$ with y(0) = y(L) = 0
- (b) Eigenvalue problems and eigenfunctions
- (c) Sturm-Liouville theory introduction
- (d) Applications to heat and wave equations

44. Advanced theory:

- (a) Existence and uniqueness theorems
- (b) Picard iteration method
- (c) Lipschitz conditions
- (d) Comparison of analytical vs. numerical approaches

45. Review and synthesis:

- (a) Master classification scheme
- (b) Solution method selection flowchart
- (c) Common error patterns and prevention
- (d) Historical development and modern applications
- (e) Connections to other mathematical areas

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 250

For more resources and practice materials, visit: stepup maths.co.uk $\,$