GCSE Higher Mathematics Practice Test 9: Number

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 90 minutes

Section A: Powers and Roots

- 1. Evaluate these expressions:
 - (a) 12^2
 - (b) 8^{-2}
 - (c) 29^0
 - (d) $(-12)^2$
 - (e) $(-8)^3$
 - $(f) 18^{-2}$
- 2. Write these as single powers:
 - (a) $11^8 \times 11^{13}$
 - (b) $21^{12} \div 21^6$
 - $(c) (8^{10})^7$
 - (d) $17^{-3} \times 17^{15}$
 - (e) $\frac{23^{11}}{23^{-10}}$
 - $(f) (13^8)^{-5}$
- 3. Evaluate these fractional indices:
 - (a) $196^{\frac{1}{2}}$
 - (b) $1000^{\frac{1}{3}}$
 - (c) $4194304^{\frac{3}{11}}$
 - (d) $1073741824^{\frac{2}{10}}$
 - (e) $6859^{\frac{2}{3}}$
 - (f) $8192^{-\frac{3}{13}}$
- 4. Simplify these expressions:
 - (a) $\sqrt{324}$
 - (b) $\sqrt[3]{1728}$

- (c) $\sqrt[4]{10000}$
- (d) $\sqrt{4.41}$
- (e) $\sqrt[3]{-1331}$
- (f) $\sqrt[5]{1024000}$
- 5. Express in index form:
 - (a) $\sqrt{37}$
 - (b) $\sqrt[3]{29}$
 - (c) $\frac{1}{\sqrt{23}}$
 - (d) $\sqrt[4]{x^{19}}$
 - (e) $\frac{1}{\sqrt[3]{y^{14}}}$
 - (f) $\sqrt{x} \times \sqrt[3]{x}$

Section B: Laws of Indices

- 6. Simplify these expressions (no calculator):
 - (a) $11^9 \times 11^{-12} \times 11^{13}$
 - (b) $\frac{16^{14} \times 16^{-10}}{16^{-9}}$
 - (c) $(13^{7})^{-9} \times 13^{24}$
 - (d) $\frac{17^{-10} \times 17^{21}}{17^9}$
- 7. Evaluate these expressions:
 - (a) $6859^{\frac{2}{3}}$
 - (b) $4194304^{-\frac{3}{11}}$
 - (c) $100000000^{\frac{4}{7}}$
 - (d) $1073741824^{-\frac{6}{30}}$
 - (e) $19683^{\frac{1}{3}}$
 - (f) $1000000000^{-\frac{4}{8}}$
- 8. Simplify these expressions:
 - (a) $x^{\frac{11}{12}} \times x^{\frac{1}{7}}$
 - (b) $\frac{c^{\frac{13}{6}}}{c^{\frac{1}{8}}}$
 - (c) $(y^{\frac{1}{10}})^{20}$
 - (d) $\sqrt{x} \times x^{\frac{1}{11}}$
 - (e) $\frac{\sqrt[3]{d^{14}}}{\sqrt{d}}$
 - (f) $(e^{-\frac{1}{10}})^{-20}$
- 9. Write these in the form a^n where a and n are rational:
 - (a) $\sqrt{29} \times 29^{10}$
 - (b) $\frac{31^8}{\sqrt[3]{31}}$
 - (c) $\sqrt[4]{18^{19}} \times 18^{-\frac{7}{8}}$
 - (d) $\frac{\sqrt{37}}{\sqrt[3]{37^{14}}}$

Section C: Surds

- 10. Simplify these surds:
 - (a) $\sqrt{116}$
 - (b) $\sqrt{176}$
 - (c) $\sqrt{188}$
 - (d) $\sqrt{333}$
 - (e) $\sqrt{363}$
 - (f) $\sqrt{1200}$
- 11. Simplify these expressions:
 - (a) $12\sqrt{29} + 19\sqrt{29}$
 - (b) $23\sqrt{11} 11\sqrt{11}$
 - (c) $\sqrt{92} + \sqrt{207}$
 - (d) $\sqrt{333} \sqrt{252}$
 - (e) $11\sqrt{36} + 15\sqrt{81}$
 - (f) $\sqrt{333} \sqrt{192} + \sqrt{75}$
- 12. Multiply and simplify:
 - (a) $\sqrt{17} \times \sqrt{68}$
 - (b) $\sqrt{36} \times \sqrt{144}$
 - (c) $13\sqrt{8} \times 9\sqrt{32}$
 - (d) $\sqrt{24} \times \sqrt{96}$
 - (e) $\sqrt{11} \times \sqrt{44} \times \sqrt{176}$
 - (f) $15\sqrt{10} \times 9\sqrt{40}$
- 13. Expand and simplify:
 - (a) $(10 + \sqrt{23})(7 \sqrt{23})$
 - (b) $(9 + \sqrt{31})(6 + 11\sqrt{31})$
 - (c) $(12 \sqrt{29})^2$
 - (d) $(\sqrt{37} + \sqrt{17})(\sqrt{37} \sqrt{17})$
 - (e) $(11\sqrt{23} + 1)(11\sqrt{23} 1)$
 - (f) $(\sqrt{31} + 10)^2$
- 14. Rationalize the denominators:
 - (a) $\frac{1}{\sqrt{31}}$
 - (b) $\frac{23}{\sqrt{37}}$
 - (c) $\frac{\sqrt{23}}{\sqrt{92}}$
 - (d) $\frac{20}{10\sqrt{2}}$
 - (e) $\frac{1}{9+\sqrt{23}}$
 - $(f) \ \frac{15}{1-\sqrt{31}}$

Section D: More Complex Surd Operations

- 15. Rationalize these denominators:
 - (a) $\frac{17}{10+\sqrt{29}}$
 - (b) $\frac{29}{9-\sqrt{41}}$
 - $(c) \ \frac{\sqrt{23}}{1+\sqrt{23}}$
 - (d) $\frac{11\sqrt{31}}{9+\sqrt{31}}$
 - (e) $\frac{1}{\sqrt{30}-\sqrt{23}}$
 - (f) $\frac{\sqrt{31}+9}{\sqrt{31}-10}$
- 16. Simplify these expressions completely:
 - (a) $\frac{\sqrt{44} + \sqrt{99}}{\sqrt{11}}$
 - (b) $\frac{\sqrt{125} \sqrt{100}}{\sqrt{5}}$
 - (c) $\sqrt{(11+\sqrt{31})(11-\sqrt{31})}$
 - (d) $\sqrt{188} 10\sqrt{47} + \sqrt{147}$
 - (e) $(\sqrt{23} + \sqrt{92})^2$
 - (f) $\frac{\sqrt{176}}{\sqrt{23}} + \frac{\sqrt{138}}{\sqrt{23}}$
- 17. Prove that:
 - (a) $(\sqrt{g} + \sqrt{h})(\sqrt{g} \sqrt{h}) = g h$
 - (b) $\frac{1}{\sqrt{j}+\sqrt{k}} = \frac{\sqrt{j}-\sqrt{k}}{j-k}$
 - (c) $(j + k\sqrt{v})^2 = j^2 + 2jk\sqrt{v} + k^2v$

Section E: Standard Form

- 18. Write these numbers in standard form:
 - (a) 1145000
 - (b) 0.000151
 - (c) 9810000000
 - (d) 0.0000000739
 - (e) 1485.7
 - (f) 0.01513
- 19. Write these in ordinary form:
 - (a) 1.3×10^{-2}
 - (b) 1.014×10^{-12}
 - (c) 1.4857×10^{-15}
 - (d) 9.81×10^{18}
 - (e) 1.51×10^{-10}
 - (f) 1.145×10^{13}
- 20. Calculate, giving answers in standard form:

- (a) $(15 \times 10^{12}) \times (17 \times 10^{14})$
- (b) $(11 \times 10^{-10}) \times (19 \times 10^{15})$
- (c) $(30 \times 10^{13}) \div (10 \times 10^{-8})$
- (d) $(27 \times 10^{-12}) \div (18 \times 10^{-15})$
- (e) $(15 \times 10^{11})^2$
- (f) $\sqrt{121 \times 10^{24}}$
- 21. Calculate these more complex expressions:
 - (a) $(10.8 \times 10^{11}) \times (4.25 \times 10^{-13})$
 - (b) $\frac{21.6 \times 10^{14}}{5.4 \times 10^{-11}}$
 - (c) $(11.4 \times 10^{-10}) + (1.29 \times 10^{-9})$
 - (d) $(14.8 \times 10^{13}) (10.9 \times 10^{12})$
 - (e) $\frac{(10.5 \times 10^9) \times (9.0 \times 10^{-10})}{(10.5 \times 10^9) \times (9.0 \times 10^{-10})}$
 - (f) $(1.3225 \times 10^{22})^{\frac{1}{2}}$

Section F: Rational Numbers and Operations

- 22. Calculate these fractions (give answers in simplest form):

 - (b) $\frac{19}{32} \frac{18}{148}$ (c) $\frac{22}{23} \times \frac{46}{33}$ (d) $\frac{20}{37} \div \frac{30}{48}$ (e) $\frac{17}{18} \frac{13}{27} + \frac{23}{54}$
- 23. Convert these recurring decimals to fractions:
 - (a) $0.\overline{2}$
 - (b) $0.\overline{84}$
 - (c) $0.9\overline{5}$
 - (d) $0.\overline{857142}$
 - (e) $8.3\overline{7}$
 - (f) $0.84\overline{2}$
- 24. Work out these percentage calculations:
 - (a) Increase 1080 by 95%
 - (b) Decrease 1320 by 48%
 - (c) Find 52.5% of 1480
 - (d) What percentage is 217 out of 280?
 - (e) If 115% of a number is 299, find the number
 - (f) A price increases from £165 to £181.5. Find the percentage increase
- 25. Solve these percentage problems:
 - (a) After a 100% increase, a price is £398. Find the original price
 - (b) After a 95% decrease, a quantity is 180. Find the original quantity
 - (c) The value of a car decreases by 60% each year. If it's worth £4320 now, what was it worth 2 years ago?
 - (d) An investment grows by 15% per year. After 2 years it's worth £2645.25. Find the initial investment

Section G: Complex Calculations

- 26. Simplify these mixed expressions:
 - (a) $11^{-2} + 17^0 18^{-1}$
 - (b) $\sqrt{144} \times 1728^{\frac{1}{3}} 11^{-2}$
 - (c) $\frac{6859^{\frac{2}{3}} 4194304^{\frac{3}{11}}}{169^{\frac{1}{2}}}$
 - (d) $100^{-\frac{1}{2}} + 169^{\frac{1}{2}} \times 9^{-1}$
- 27. Calculate exactly (leave surds in your answer):
 - (a) $\frac{17}{\sqrt{23}} + \frac{13}{\sqrt{92}}$
 - (b) $\sqrt{81} \times \sqrt{144} \sqrt{324}$
 - (c) $\frac{\sqrt{294} + \sqrt{192}}{\sqrt{98}}$
 - (d) $(11\sqrt{3} 9)^2$
- 28. Work with standard form in context:
 - (a) The mass of a lithium atom is 1.152×10^{-26} kg. Find the mass of 6.02×10^{23} lithium atoms
 - (b) Gamma rays travel at 3×10^8 m/s. How far do they travel in one century (use 1 century = 3.154×10^9 seconds)?
 - (c) The diameter of a protein molecule is approximately 5×10^{-9} m. How many protein molecules would fit across a distance of 9 mm?
 - (d) A supercomputer processes 1.152×10^{17} operations per second. How many operations in 60 minutes?

Section H: Problem Solving

- 29. Prove that $\sqrt{23}$ is irrational. (Use proof by contradiction: assume $\sqrt{23} = \frac{a}{b}$ where a and b are integers with no common factors)
- 30. The number η satisfies $\eta^2 = 8\eta 6$.
 - (a) Show that $\eta = 4 + \sqrt{10}$
 - (b) Calculate η to 4 decimal places
 - (c) Find $\frac{1}{\eta}$ in surd form
- 31. Rationalize the denominator of $\frac{1}{\sqrt{19}+\sqrt{23}+\sqrt{29}}$. (Hint: First rationalize using $(\sqrt{19}+\sqrt{23})-\sqrt{29}$)
- 32. A rectangle has sides of length $(10 + \sqrt{23})$ cm and $(10 \sqrt{23})$ cm.
 - (a) Find the exact area
 - (b) Find the exact perimeter
 - (c) Show that the area is rational but the perimeter is irrational
- 33. The population of viruses decuples every 16 hours. If there are initially 17×10^2 viruses:
 - (a) How many viruses after 64 hours?
 - (b) Express your answer in standard form
 - (c) After how many hours will there be more than 5×10^{13} viruses?
- 34. Show that $\frac{1}{\sqrt{g}+\sqrt{h}} + \frac{1}{\sqrt{g}-\sqrt{h}} = \frac{2\sqrt{g}}{g-h}$

- 35. A cylinder has volume $V = \pi r^2 h$. If the volume is 864π cm³ and h = 24 cm:
 - (a) Find the radius in surd form
 - (b) Find the surface area (use $A = 2\pi r^2 + 2\pi rh$)
 - (c) Express both answers exactly
- 36. The equation $x^2 20x + 1 = 0$ has solutions $x = 10 \pm 3\sqrt{11}$.
 - (a) Verify this by substitution
 - (b) Find $\frac{1}{10+3\sqrt{11}} + \frac{1}{10-3\sqrt{11}}$ without using a calculator
 - (c) Hence find the sum of the reciprocals of the roots

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$