GCSE Foundation Mathematics Practice Test 3: Probability

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 90 minutes

Time diewed. Vo initiates
Section A: Basic Probability Concepts
1. State whether these events are certain, likely, even chance, unlikely, or impossible:
 (a) Getting an even number when rolling a fair die (b) Rolling a 9 on a standard six-sided die (c) A football match ending in a draw (d) Getting a number less than 7 when rolling a standard die (e) Choosing a diamond from a standard pack of cards (f) February having 30 days
2. Express these probabilities as fractions, decimals, and percentages:
(a) $P(\text{certain}) = 1$ (b) $P(\text{impossible}) = 0$ (c) $P(\text{even chance}) = 0.5$ (d) $P(\text{very unlikely}) = 0.1$ (e) $P(\text{likely}) = \frac{4}{5}$
3. Complete these probability statements:
 (a) All probabilities are between and (b) If P(E) = 0.6, then P(not E) = (c) If P(F) = ⁵/₉, then P(not F) = (d) The sum of all probabilities in a sample space equals
4. A spinner has 8 equal sections with colours: Red, Red, Blue, Blue, Blue, Green, Yellow, Yellow, Write down:
(a) The sample space(b) P(spinning red)

(c) P(spinning blue)

(e) P(not spinning blue)

(d) P(spinning green or yellow)

Section B: Single Event Probability

- 5. A fair twelve-sided die numbered 1-12 is rolled. Find the probability of rolling:
 - (a) A 9
 - (b) A prime number
 - (c) A number greater than 8
 - (d) A number less than or equal to 4
 - (e) A multiple of 3
 - (f) A number between 5 and 10 (inclusive)
- 6. A bag contains 9 silver coins, 6 gold coins, and 4 copper coins. A coin is drawn at random. Find the probability of drawing:
 - (a) A silver coin
 - (b) A gold coin
 - (c) A copper coin
 - (d) A silver or gold coin
 - (e) Not a copper coin
 - (f) Not a silver coin
- 7. A standard pack of 52 playing cards is shuffled. Find the probability of drawing:
 - (a) A jack
 - (b) A diamond
 - (c) A red card
 - (d) The queen of clubs
 - (e) An ace or king
 - (f) A black jack
- 8. The probability that Maria scores a goal in hockey is $\frac{2}{7}$. What is the probability that she doesn't score?
- 9. In a college class of 35 students, 21 have laptops. If a student is chosen at random, find the probability they:
 - (a) Have a laptop
 - (b) Don't have a laptop

Section C: Sample Spaces and Outcomes

- 10. A coin is flipped and a die is rolled simultaneously.
 - (a) List all possible outcomes
 - (b) How many outcomes are in the sample space?
 - (c) Find P(heads and 6)
 - (d) Find P(tails and even number)
 - (e) Find P(heads and number greater than 4)
- 11. Two fair dice are rolled and the difference between their scores is calculated (larger smaller).
 - (a) Complete the sample space table showing all possible differences:

Difference	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1					
3	2					
4	3					
5	4					
6	5					

- (b) Find P(difference = 0)
- (c) Find P(difference = 5)
- (d) Find P(difference > 3)
- (e) Find P(difference is even)
- 12. A bag has 4 equal sections: Pink (P), Turquoise (T), Silver (S), Gold (G). The bag is selected twice.
 - (a) List all possible outcomes
 - (b) Find P(same colour twice)
 - (c) Find P(at least one pink)
 - (d) Find P(no turquoise)
- 13. A box contains cards numbered 3, 5, 7, 9. Two cards are drawn without replacement.
 - (a) List all possible pairs
 - (b) Find P(both numbers are odd)
 - (c) Find P(sum of numbers = 12)
 - (d) Find P(second number > first number)

Section D: Probability Rules

- 14. For mutually exclusive events P and Q, where P(P) = 0.2 and P(Q) = 0.6:
 - (a) Find P(P or Q)
 - (b) Find P(neither P nor Q)
 - (c) What is P(P and Q)? Explain your answer.
- 15. A card is drawn from a standard pack. Let E = "drawing a diamond" and F = "drawing an ace".
 - (a) Find P(E)
 - (b) Find P(F)
 - (c) Find P(E and F)
 - (d) Find P(E or F)
 - (e) Are events E and F mutually exclusive? Explain.
- 16. The probability of wind on Friday is 0.8. The probability of wind on Saturday is 0.4. Assuming the events are independent:
 - (a) Find the probability of wind on both days
 - (b) Find the probability of no wind on either day
 - (c) Find the probability of wind on at least one day
 - (d) Find the probability of wind on exactly one day

- 17. A biased coin has P(heads) = 0.4. The coin is flipped three times.
 - (a) Find P(three heads)
 - (b) Find P(three tails)
 - (c) Find P(at least one head)
 - (d) Find P(exactly two tails)

Section E: Tree Diagrams

- 18. A container has 5 orange balls and 2 pink balls. Two balls are drawn without replacement.
 - (a) Draw a tree diagram showing all possibilities
 - (b) Find P(two orange balls)
 - (c) Find P(two pink balls)
 - (d) Find P(one orange and one pink)
 - (e) Find P(at least one orange ball)
- 19. The probability that a student passes Art is 0.85 and passes Music is 0.75. Assume the subjects are independent.
 - (a) Draw a tree diagram
 - (b) Find the probability of passing both subjects
 - (c) Find the probability of failing both subjects
 - (d) Find the probability of passing exactly one subject
 - (e) Find the probability of passing at least one subject
- 20. A restaurant has two ovens. Oven A works 88% of the time, Oven B works 92% of the time.
 - (a) Draw a tree diagram
 - (b) Find the probability both ovens work
 - (c) Find the probability exactly one oven works
 - (d) Find the probability at least one oven works
 - (e) Find the probability neither oven works
- 21. Drawer 1 contains 8 black and 2 white socks. Drawer 2 contains 5 black and 5 white socks. A drawer is chosen at random, then a sock is drawn from that drawer.
 - (a) Draw a tree diagram
 - (b) Find the probability of drawing a black sock
 - (c) Find the probability of drawing a white sock
 - (d) If a white sock is drawn, what is the probability it came from Drawer 2?

Section F: Conditional Probability

22. The two-way table shows information about workers and their transport:

	Drives car	Uses public transport	Total
Full-time	45	15	60
Part-time	25	15	40
Total	70	30	100

A worker is chosen at random. Find:

- (a) P(drives car)
- (b) P(full-time)
- (c) P(drives car and full-time)
- (d) P(drives car full-time)
- (e) P(full-time drives car)
- 23. In a survey of 150 people about chocolate and ice cream preferences:
 - 90 people like chocolate
 - 70 people like ice cream
 - 40 people like both chocolate and ice cream

Find the probability that a randomly chosen person:

- (a) Likes chocolate or ice cream
- (b) Likes neither chocolate nor ice cream
- (c) Likes ice cream given they like chocolate
- (d) Likes only chocolate
- (e) Likes only ice cream
- 24. A jar has red and yellow marbles. $P(\text{red}) = \frac{4}{9}$. Two marbles are drawn without replacement. If there are 18 marbles in total:
 - (a) How many red marbles are there?
 - (b) How many yellow marbles are there?
 - (c) Find P(second marble is red first marble is red)
 - (d) Find P(second marble is red first marble is yellow)

Section G: Experimental vs Theoretical Probability

25. A biased die is rolled 250 times with these results:

Number	1	2	3	4	5	6
Frequency	30	45	40	55	35	45

- (a) Calculate the experimental probability for each number
- (b) Which number is most likely to appear?
- (c) Compare with theoretical probabilities for a fair die
- (d) If the die is rolled 750 times, estimate how many 2s you would expect
- 26. A roulette wheel is tested and gives these results: Black: 48 times, Red: 44 times, Green: 8 times
 - (a) How many times was the wheel spun?
 - (b) Calculate the experimental probability of each colour
 - (c) If the wheel should be fair between black and red, what might the green represent?
 - (d) Estimate how many times black would appear in 200 spins
- 27. A coin is flipped 60 times and lands heads 39 times.
 - (a) What is the experimental probability of heads?
 - (b) What is the experimental probability of tails?
 - (c) Is this coin likely to be fair? Explain your reasoning.
 - (d) If the coin is flipped 100 more times, estimate how many heads you would expect

Section H: Problem Solving

- 28. In a competition, the probability of winning the grand prize is $\frac{1}{50000000}$.
 - (a) Express this as a decimal (to 3 significant figures)
 - (b) What is the probability of not winning?
 - (c) If 10 million people enter, estimate how many will win
 - (d) Is it sensible to expect to win? Explain.
- 29. A drug test is 96% accurate. This means:
 - If someone uses drugs, there's a 96% chance the test is positive
 - If someone doesn't use drugs, there's a 96% chance the test is negative

In a population where 5% of people use drugs:

- (a) Out of 1000 people, how many actually use drugs?
- (b) How many of those who use drugs will test positive?
- (c) How many who don't use drugs will test negative?
- (d) How many false positives will there be?
- 30. Five friends each choose a number from 1 to 6. What is the probability that:
 - (a) All five choose the same number?
 - (b) All five choose different numbers?
 - (c) At least four choose the same number?
 - (d) No one chooses the number 6?
- 31. A PIN code consists of 4 digits. Each digit can be 0-9 and digits can be repeated.
 - (a) How many different PIN codes are possible?
 - (b) What is the probability of guessing the correct PIN in one attempt?
 - (c) If the first digit cannot be 0 and no digit can be repeated, how many PINs are possible?
- 32. In a carnival game, you win if you roll three dice and get at least two 6s.
 - (a) List all ways to get exactly two 6s
 - (b) What is the probability of getting exactly three 6s?
 - (c) What is the probability of winning (at least two 6s)?
 - (d) If you play 216 games, estimate how many you would win
 - (e) Is this a fair game if the prize is worth 5 times the entry fee?

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 100

For more resources and practice materials, visit: stepup maths.co.uk $\,$