A Level Pure Mathematics Practice Test 5: Exponentials and Logarithms

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise. Time allowed: 2 hours

Section A: Laws of Indices and Exponential Functions

1. Simplify these expressions using laws of indices:

(a)
$$8^2 \times 8^5 \times 8^{-3}$$

(b)
$$\frac{9^7 \times 9^{-2}}{9^4}$$

(c)
$$(3^4)^3 \times 3^{-8}$$

(d)
$$\frac{(8^2)^3 \times 8^{-5}}{8^2}$$

(e) $(7^3 \times 7^{-2})^4$

(e)
$$(7^3 \times 7^{-2})^4$$

(f)
$$\frac{27^{2x} \times 27^{x-2}}{27^{4x+1}}$$

2. Solve these exponential equations:

(a)
$$8^x = 512$$

(b)
$$9^{x+1} = 729$$

(c)
$$5^{3x-2} = 625$$

(d)
$$32^x = \frac{1}{4}$$

(e)
$$49^x = 7^{x+8}$$

(f)
$$16^{2x} = 64^{x-2}$$

3. Express in the form a^x where a is a rational number:

(a)
$$(\frac{1}{7})^x \times 49^x$$

(b)
$$\frac{128^x}{8^{2x}}$$

(c)
$$(216)^{\frac{x}{3}} \times (\frac{1}{6})^x$$

(d)
$$\frac{81^x \times 9^{-3x}}{729^{\frac{x}{3}}}$$

4. Sketch the graphs of these exponential functions, showing key features:

(a)
$$y = 8^x$$

(b)
$$y = (\frac{1}{8})^x$$

(c)
$$y = 7^x + 3$$

(d)
$$y = 6^{x-4}$$

- (e) $y = -6^x$
- (f) $y = 6^{-x}$
- 5. For the function $f(x) = 5e^x$:
 - (a) State the domain and range
 - (b) Find the y-intercept
 - (c) Describe the behavior as $x \to \infty$ and $x \to -\infty$
 - (d) Find f'(x) and comment on the gradient
 - (e) Sketch the graph, showing the tangent at (0,5)

Section B: Logarithmic Functions and Properties

- 6. Express these in logarithmic form:
 - (a) $8^3 = 512$
 - (b) $10^{-5} = 0.00001$
 - (c) $e^v = 6$
 - (d) $9^0 = 1$
 - (e) $5^{-2} = \frac{1}{25}$
 - (f) $f^g = h$
- 7. Express these in exponential form:
 - (a) $\log_8 512 = 3$
 - (b) $\log_{10} 0.00001 = -5$
 - (c) $\ln e^6 = 6$
 - (d) $\log_4 \frac{1}{64} = -3$
 - (e) $\log_f h = g$
 - (f) $\ln e^8 = 8$
- 8. Evaluate these logarithms without a calculator:
 - (a) $\log_8 64$
 - (b) $\log_9 729$
 - (c) $\log_{10} 10000000$
 - (d) $\log_3 \frac{1}{243}$
 - (e) $\log_{64} 16$
 - (f) $\log_{49} 7$
- 9. Use the laws of logarithms to simplify:
 - (a) $\log_f 8 + \log_f 5$
 - (b) $\log_f 56 \log_f 8$
 - (c) $7\log_f 4$
 - (d) $\log_f r + 6\log_f s \log_f t$
 - (e) $\frac{1}{6} \log_f 64 + \log_f 9$
 - (f) $\log_f(u^2 49) \log_f(u 7)$ where u > 7
- 10. Sketch the graphs of these logarithmic functions:

- (a) $y = \log_8 x$
- (b) $y = \ln x$
- (c) $y = \log_8 x + 4$
- (d) $y = \log_8(x 4)$
- (e) $y = -\log_8 x$
- (f) $y = \log_8(-x)$ for x < 0

Section C: Solving Logarithmic Equations

- 11. Solve these logarithmic equations:
 - (a) $\log_8 x = 2$
 - (b) $\log_9(x+4) = 2$
 - (c) $\log_{10}(6x-5)=2$
 - (d) $\ln(x-6) = 0$
 - (e) $\log_4(x^2) = 5$
 - (f) $6\log_2 x = 12$
- 12. Solve these equations involving multiple logarithms:
 - (a) $\log_8 x + \log_8 5 = 2$
 - (b) $\log_f 24 \log_f 8 = \log_f x$
 - (c) $\log_5 x + \log_5(x 6) = 2$
 - (d) $\log_{10} x \log_{10} (x 7) = \log_{10} 6$
 - (e) $6\log_4 x = \log_4 16$
 - (f) $\log_3(x+5) + \log_3(x-5) = 3$
- 13. Solve these equations where the base is unknown:
 - (a) $\log_a 64 = 2$
 - (b) $\log_a \frac{1}{216} = -3$
 - (c) $\log_a 1024 = \frac{10}{3}$
 - (d) $\log_a 2401 = \frac{8}{2}$
- 14. Solve these quadratic logarithmic equations:
 - (a) $(\log_8 x)^2 = 4$
 - (b) $(\log_5 x)^2 7\log_5 x + 10 = 0$
 - (c) $\log^2 x 7 \log x + 10 = 0$ (base 10)
 - (d) $(\ln x)^2 9 \ln x + 18 = 0$
- 15. Use the change of base formula to evaluate:
 - (a) $\log_8 13$ in terms of natural logarithms
 - (b) $\log_9 28$ in terms of common logarithms
 - (c) $\log_7 21$ using ln
 - (d) Express $\log_x y \times \log_y z \times \log_z x$

Section D: Combined Exponential and Logarithmic Equations

- 16. Solve these mixed equations:
 - (a) $e^x = 13$
 - (b) $8^x = 40$
 - (c) $9 \times 4^x = 144$
 - (d) $6^{x-2} = 108$
 - (e) $e^{2x} 7e^x + 10 = 0$
 - (f) $9^{2x} 10 \times 9^x + 9 = 0$
- 17. Solve using substitution methods:
 - (a) $64^x 8^{x+2} 512 = 0$ (let $y = 8^x$)
 - (b) $81^x 10 \times 3^x + 9 = 0$ (let $u = 3^x$)
 - (c) $e^{2x} 10e^x + 24 = 0$ (let $t = e^x$)
 - (d) $\log^2 x 7 \log x + 10 = 0$ (let $z = \log x$)
- 18. Find the exact solutions:
 - (a) $\ln x + \ln(x 6) = \ln 16$
 - (b) $\log_4 x + \log_{64} x = 2$
 - (c) $e^x + e^{-x} = 7$
 - (d) $6 \ln x = \ln(x + 24)$
- 19. Solve these equations involving both exponentials and logarithms:
 - (a) $x = \log_8(8^x + 7)$
 - (b) $e^{\ln x} = x + 9$
 - (c) $\ln(e^x 5) = 5$
 - (d) $\log_6(6^x + 30) = x + 3$
- 20. Find the values of x for which:
 - (a) $8^x > 4096$
 - (b) $\log_9 x < 2$
 - (c) $e^x \le 30$
 - (d) $\ln x \ge 4$
 - (e) $\log_8(x-5) > 1$
 - (f) $9^{x+2} < \frac{1}{81}$

Section E: Exponential Growth and Decay

- 21. A population grows according to $P = P_0 e^{kt}$ where $P_0 = 2000$ and k = 0.07 per year.
 - (a) Find the population after 3 years
 - (b) How long for the population to increase by 75%?
 - (c) What is the percentage growth rate per year?
 - (d) Find when the population reaches 6000
 - (e) Calculate the population after 12 years

- 22. A radioactive substance decays according to $A = A_0 e^{-\lambda t}$ where $\lambda = 0.0693$ per year.
 - (a) If initially there are 300g, find the amount after 6 years
 - (b) Calculate the half-life of the substance
 - (c) How long for 80% to decay?
 - (d) What percentage remains after 20 years?
 - (e) Find when only 30g remains
- 23. An investment grows at 10% compound interest per annum.
 - (a) Write the growth formula
 - (b) How long to increase by 200%?
 - (c) If £1800 is invested, find the value after 16 years
 - (d) How long for the investment to reach £9000?
 - (e) Compare with simple interest at 10% over 6 years
- 24. The temperature of a cooling object follows Newton's law: $T = T_{\text{room}} + (T_0 T_{\text{room}})e^{-kt}$
 - (a) If room temperature is 24°C, initial temperature is 96°C, and k = 0.06 per minute, find the temperature after 20 minutes
 - (b) How long for the object to cool to 48°C?
 - (c) Find the temperature after 60 minutes
 - (d) What happens as $t \to \infty$?
 - (e) If the object cools to 72° C after 10 minutes, find k
- 25. Carbon-14 dating uses the formula $A = A_0 e^{-0.000121t}$ where t is in years.
 - (a) Calculate the half-life of carbon-14
 - (b) If a sample has 45% of its original carbon-14, find its age
 - (c) How old is a sample with 3% remaining?
 - (d) What percentage remains after 30000 years?
 - (e) Find the age of a sample with ratio 0.45 of living organisms

Section F: Logarithmic Modeling and Applications

- 26. The Richter scale for earthquake magnitude is given by $M = \log_{10}(\frac{I}{I_0})$ where I is intensity.
 - (a) If one earthquake has magnitude 7.5 and another has magnitude 5.5, compare their intensities
 - (b) An earthquake has intensity 200000 times the reference level. Find its magnitude
 - (c) How much more intense is a magnitude 9.5 earthquake than magnitude 7.5?
 - (d) Find the magnitude of an earthquake with intensity $4 \times 10^6 I_0$
- 27. The pH scale is defined as $pH = -\log_{10}[H^+]$ where $[H^+]$ is hydrogen ion concentration.
 - (a) Find the pH when $[H^{+}] = 10^{-7} \text{ mol/L}$
 - (b) If pH = 1.8, find the hydrogen ion concentration
 - (c) Compare the acidity of solutions with pH 0.5 and pH 9
 - (d) Find the pH when $[H^{+}] = 7.9 \times 10^{-1} \text{ mol/L}$
 - (e) If the concentration is multiplied by 5, how does the pH change?

- 28. Sound intensity level in decibels is $L = 10 \log_{10}(\frac{I}{I_0})$ where $I_0 = 10^{-12}$ W/m².
 - (a) Find the decibel level when $I = 10^{-2} \text{ W/m}^2$
 - (b) A sound has level 105 dB. Find its intensity
 - (c) How much more intense is 120 dB than 80 dB?
 - (d) Find the intensity of a 25 dB sound
 - (e) If intensity increases by factor 5000, by how much do decibels increase?
- 29. The Michaelis-Menten equation in biochemistry is $v = \frac{V_{\text{max}}[S]}{K_m + |S|}$.
 - (a) Take logarithms to linearize when $[S] >> K_m$
 - (b) If $V_{\text{max}} = 180$, $K_m = 15$, find v when [S] = 30
 - (c) Plot $\log v$ against $\log[S]$ for large [S]
 - (d) Find [S] when $v = \frac{5V_{\text{max}}}{6}$
- 30. In information theory, entropy is $H = -\sum p_i \log_2 p_i$.
 - (a) For a fair 32-sided die, calculate the entropy
 - (b) For a biased coin with P(H) = 0.75, find the entropy
 - (c) Find the entropy of a fair 64-sided die
 - (d) What probability distribution maximizes entropy for 7 outcomes?

Section G: Advanced Functions and Transformations

- 31. Analyze the function $f(x) = \ln(x-6) + 5$:
 - (a) State the domain and range
 - (b) Find the x and y intercepts
 - (c) Identify any asymptotes
 - (d) Find $f^{-1}(x)$
 - (e) Sketch both f(x) and $f^{-1}(x)$
- 32. For the function $g(x) = e^{6x+1} 7$:
 - (a) Describe the transformations from $y = e^x$
 - (b) State the domain and range
 - (c) Find the horizontal asymptote
 - (d) Solve g(x) = 0
 - (e) Find $g^{-1}(x)$
- 33. Consider $h(x) = \log_6(36 x^2)$:
 - (a) Find the domain of h(x)
 - (b) Determine the range
 - (c) Find the maximum value and where it occurs
 - (d) Solve h(x) = 1
 - (e) Sketch the graph of y = h(x)
- 34. The function $k(x) = we^{zx} + q$ passes through (0, 13), (1, 21), and has horizontal asymptote y = 6.
 - (a) Find the values of w, z, and q

- (b) Write the equation of k(x)
- (c) Find k(2)
- (d) Solve k(x) = 30
- (e) Find the domain and range of k(x)
- 35. Investigate the function $m(x) = \frac{x \ln x}{x}$ for x > 0:
 - (a) Find m'(x) and m''(x)
 - (b) Locate any stationary points
 - (c) Determine the nature of stationary points
 - (d) Find the behavior as $x \to 0^+$ and $x \to \infty$
 - (e) Sketch the graph of y = m(x)

Section H: Systems and Complex Problems

36. Solve these simultaneous equations:

(a)
$$\begin{cases} y = 6^x \\ y = 12 - x \end{cases}$$

(b)
$$\begin{cases} \ln y = 6x \\ y = e^{x+5} \end{cases}$$

(c)
$$\begin{cases} \log_6 x + \log_6 y = 2 \\ x - y = 24 \end{cases}$$
(d)
$$\begin{cases} e^x + e^y = 14 \\ e^x - e^y = 10 \end{cases}$$

(d)
$$\begin{cases} e^x + e^y = 14 \\ e^x - e^y = 10 \end{cases}$$

- 37. Find where these curves intersect:
 - (a) $y = e^x$ and $y = \ln x$
 - (b) $y = 6^x \text{ and } y = x^6$
 - (c) $y = \log x$ and y = 6 x
 - (d) $y = e^{-x}$ and y = x + 5
- 38. Solve these differential equations:
 - (a) $\frac{dy}{dx} = ky$ where $y(0) = y_0$
 - (b) $\frac{dP}{dt} = rP(1 \frac{P}{K})$ (logistic growth)
 - (c) $\frac{dT}{dt} = -k(T T_{\text{env}})$ (Newton's cooling)
 - (d) $\frac{dN}{dt} = -\lambda N$ (radioactive decay)
- 39. A bacteria culture follows logistic growth: $P(t) = \frac{L}{1+ae^{-kt}}$
 - (a) If L = 2500, P(0) = 100, and P(1) = 200, find a and k
 - (b) Find the population after 9 days
 - (c) When does the population reach 1250?
 - (d) Find the maximum growth rate and when it occurs
 - (e) Compare with exponential growth $P = 100e^{rt}$
- 40. The Arrhenius equation in chemistry is $k = Ae^{-E_a/(RT)}$ where k is reaction rate.

- (a) Take natural logarithms to linearize the equation
- (b) If at temperature 320K, k = 0.015, and at 380K, k = 0.18, find E_a/R
- (c) Find the activation energy if $R = 8.314 \text{ J/(mol \cdot K)}$
- (d) Predict the rate constant at 420K
- (e) At what temperature does the rate increase 6-fold from 320K?

Section I: Advanced Applications and Modeling

- 41. A pharmacokinetic model describes drug concentration: $C(t) = \frac{D}{V}e^{-kt}$ where D is dose, V is volume of distribution, k is elimination rate.
 - (a) If D=1000 mg, V=70 L, k=0.18 h⁻¹, find the initial concentration
 - (b) Calculate the concentration after 5 hours
 - (c) Find the half-life of the drug
 - (d) When does concentration drop to 3 mg/L?
 - (e) Model repeated dosing every 3 hours
- 42. Economic growth follows $Y(t) = Y_0 e^{rt}$ where r is the growth rate.
 - (a) If GDP grows at 8% per year, how long to double?
 - (b) A country's GDP is £4.5 trillion and grows to £7.2 trillion in 7 years. Find the growth rate
 - (c) Compare linear growth $Y = Y_0(1 + rt)$ with exponential over 40 years
 - (d) Find when exponential growth overtakes linear with same initial rate
 - (e) Model with varying growth rate $r(t) = r_0 e^{-\epsilon t}$
- 43. The spread of an epidemic follows $I(t) = \frac{N}{1 + (N/I_0 1)e^{-rt}}$ (logistic model).
 - (a) If N = 25000, $I_0 = 30$, r = 0.10 per day, find infections after 18 days
 - (b) When do infections peak?
 - (c) Find the maximum rate of spread
 - (d) Compare with exponential model $I = I_0 e^{rt}$ for early stages
 - (e) Model intervention reducing r by 80% after day 24
- 44. Weber-Fechner law relates stimulus and perception: $P = k \log(S/S_0)$.
 - (a) If increasing stimulus 6-fold increases perception by 30 units, find k
 - (b) Find perception when stimulus increases 20-fold
 - (c) A sound's loudness follows $L = 10 \log_{10}(I/I_0)$. Compare two sounds differing by 40 dB
 - (d) Model brightness perception where threshold $S_0 = 0.15$ lux
 - (e) Explain why logarithmic scaling matches human perception patterns
- 45. Design an optimization problem involving exponentials:
 - (a) A company's profit is $P(t) = 3000e^{0.02t} 1000t$ over t years
 - (b) Find when profit is maximized
 - (c) Calculate maximum profit
 - (d) Determine break-even points
 - (e) Model with discounting: present value = $\frac{P(t)}{e^{rt}}$
 - (f) Find optimal time to sell considering 9% discount rate

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$