A Level Pure Mathematics Practice Test 1: Integration

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Basic Integration - Polynomials

1. Find these indefinite integrals:

(a)
$$\int (3x^2 + 4x - 5) dx$$

(b)
$$\int (2x^3 - x^2 + 6x + 1) dx$$

(c)
$$\int (x^4 - 2x + 3) dx$$

(d)
$$\int (5x^2 + \frac{1}{2}x - 7) dx$$

(e)
$$\int (x-1)^2 dx$$

(f)
$$\int (2x+3)(x-1) dx$$

2. Integrate these functions involving negative and fractional powers:

(a)
$$\int x^{-2} dx$$

(b)
$$\int (3x^{-1} + 2x^{\frac{1}{2}}) dx$$

(c)
$$\int \frac{1}{x^3} dx$$

(d)
$$\int \sqrt{x} \, dx$$

(e)
$$\int \frac{2}{\sqrt{x}} dx$$

(f)
$$\int (x^{\frac{3}{2}} - x^{-\frac{1}{2}}) dx$$

3. Find these integrals by expanding first:

(a)
$$\int \frac{x^3 + 2x^2 - x}{x} \, dx$$

(b)
$$\int \frac{x^2 - 4}{x} \, dx$$

(c)
$$\int \frac{(x+1)^2}{x} dx$$

(d)
$$\int \frac{x^3 - 8}{x^2} dx$$

4. Evaluate these definite integrals:

(a)
$$\int_0^2 (x^2 + 3x + 1) dx$$

(b)
$$\int_{1}^{3} (2x-1) dx$$

(c)
$$\int_{-1}^{1} x^3 dx$$

(d)
$$\int_0^4 \sqrt{x} \, dx$$

- 5. Find the function f(x) given:
 - (a) $f'(x) = 3x^2 2x + 1$ and f(0) = 5
 - (b) f'(x) = 6x 4 and f(1) = 3
 - (c) f''(x) = 12x + 2, f'(0) = 1, and f(0) = 0
 - (d) $f'(x) = \frac{1}{x^2}$ for x > 0 and f(1) = 2

Section B: Integration of Standard Functions

- 6. Integrate these exponential and logarithmic functions:
 - (a) $\int e^x dx$
 - (b) $\int 3e^x dx$
 - (c) $\int e^{2x} dx$
 - (d) $\int e^{-x} dx$
 - (e) $\int \frac{1}{x} dx$ for x > 0
 - (f) $\int \frac{2}{x} dx$
- 7. Integrate these trigonometric functions:
 - (a) $\int \sin x \, dx$
 - (b) $\int \cos x \, dx$
 - (c) $\int 2\sin x \, dx$
 - (d) $\int 3\cos x \, dx$
 - (e) $\int \sec^2 x \, dx$
 - (f) $\int \csc^2 x \, dx$
- 8. Find these integrals:
 - (a) $\int (\sin x + \cos x) dx$
 - (b) $\int (e^x + x^2) dx$
 - (c) $\int (2e^x 3\sin x) dx$
 - (d) $\int \left(\frac{1}{x} + x\right) dx$ for x > 0
 - (e) $\int (3\cos x + e^{-x}) dx$
 - (f) $\int (x^2 + \frac{1}{x^2}) dx$ for x > 0
- 9. Evaluate these definite integrals:
 - (a) $\int_0^{\pi} \sin x \, dx$
 - (b) $\int_0^{\frac{\pi}{2}} \cos x \, dx$

 - (c) $\int_0^1 e^x dx$
(d) $\int_1^e \frac{1}{x} dx$
 - (e) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec^2 x \, dx$
 - (f) $\int_0^{\ln 2} e^{-x} dx$
- 10. Find the exact values:
 - (a) $\int_0^{\frac{\pi}{6}} 2\sin x \, dx$
 - (b) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos x \, dx$
 - (c) $\int_0^{\ln 3} 2e^x dx$
 - (d) $\int_1^{\sqrt{e}} \frac{2}{x} dx$

Section C: Integration by Substitution

- 11. Use substitution to find these integrals:
 - (a) $\int (2x+1)^3 dx$
 - (b) $\int (3x-2)^4 dx$
 - (c) $\int x(x^2+1)^2 dx$
 - (d) $\int x\sqrt{x^2+4}\,dx$
 - (e) $\int \frac{x}{x^2+1} dx$
 - (f) $\int \frac{2x}{(x^2+3)^2} dx$
- 12. Find these integrals using appropriate substitutions:
 - (a) $\int \sin(2x+1) dx$
 - (b) $\int \cos(3x \frac{\pi}{4}) \, dx$
 - (c) $\int e^{2x+1} dx$
 - (d) $\int e^{-3x} dx$
 - (e) $\int \frac{1}{2x+5} \, dx$
 - (f) $\int \frac{3}{4x-1} \, dx$
- 13. Use substitution for these more complex integrals:
 - (a) $\int x^2(x^3+2)^4 dx$
 - (b) $\int \frac{x^2}{\sqrt{x^3+1}} \, dx$
 - (c) $\int xe^{x^2} dx$
 - (d) $\int \frac{\ln x}{x} dx$
 - (e) $\int \sin x \cos x \, dx$
 - (f) $\int \tan x \, dx$
- 14. Evaluate these definite integrals using substitution:
 - (a) $\int_0^1 x(x^2+1)^2 dx$
 - (b) $\int_0^{\frac{\pi}{2}} \sin x \cos x \, dx$
 - (c) $\int_{1}^{2} \frac{x}{x^2+1} dx$
 - (d) $\int_0^1 x e^{x^2} dx$
- 15. Find these integrals by recognizing the derivative pattern:
 - (a) $\int \frac{2x+3}{x^2+3x+1} dx$
 - (b) $\int \frac{3x^2-2}{x^3-2x+5} dx$
 - (c) $\int \frac{e^x}{e^x+1} dx$
 - (d) $\int \frac{\cos x}{\sin x} dx$

Section D: Integration by Parts

- 16. Use integration by parts to find:
 - (a) $\int xe^x dx$
 - (b) $\int x \sin x \, dx$
 - (c) $\int x \cos x \, dx$
 - (d) $\int x^2 e^x dx$
 - (e) $\int x \ln x \, dx$
 - (f) $\int e^x \sin x \, dx$
- 17. Apply integration by parts to:
 - (a) $\int \ln x \, dx$
 - (b) $\int x \ln x \, dx$
 - (c) $\int x^2 \ln x \, dx$
 - (d) $\int \ln(x+1) dx$
 - (e) $\int x \tan^{-1} x \, dx$
 - (f) $\int x^2 \sin x \, dx$
- 18. Find these integrals that may require multiple applications:
 - (a) $\int x^2 e^{-x} dx$
 - (b) $\int x^2 \cos x \, dx$
 - (c) $\int e^x \cos x \, dx$
 - (d) $\int e^x \sin x \, dx$
 - (e) $\int \sin(\ln x) dx$
 - (f) $\int x^3 e^x dx$
- 19. Evaluate these definite integrals:
 - (a) $\int_0^1 xe^x dx$
 - (b) $\int_0^{\frac{\pi}{2}} x \sin x \, dx$
 - (c) $\int_1^e x \ln x \, dx$
 - (d) $\int_0^\pi x \cos x \, dx$
- 20. Prove these reduction formulas using integration by parts:
 - (a) $I_n = \int x^n e^x dx = x^n e^x nI_{n-1}$
 - (b) $I_n = \int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}$
 - (c) Use the first formula to find $\int x^3 e^x dx$

Section E: Area Under Curves

- 21. Find the area under these curves:
 - (a) $y = x^2$ from x = 0 to x = 3
 - (b) y = 2x + 1 from x = 1 to x = 4
 - (c) $y = x^3 x$ from x = 0 to x = 2
 - (d) $y = \sin x$ from x = 0 to $x = \pi$

22. Calculate the area between the curve and the x-axis:

- (a) $y = x^2 4$ from x = -2 to x = 2
- (b) $y = x^3 x$ from x = -1 to x = 1
- (c) $y = \sin x$ from x = 0 to $x = 2\pi$
- (d) $y = e^x 1$ from x = 0 to $x = \ln 2$

23. Find the area between these curves:

- (a) $y = x^2$ and y = 4 from x = 0 to x = 2
- (b) $y = x^2$ and y = 2x + 3 from x = -1 to x = 3
- (c) $y = \sin x$ and $y = \cos x$ from x = 0 to $x = \frac{\pi}{4}$
- (d) $y = e^x$ and y = 1 from x = 0 to x = 1

24. Find the total area enclosed by:

- (a) $y = x^2 1$ and the x-axis
- (b) $y = x^3 4x$ and the x-axis
- (c) $y = \sin x$ and y = 0 from x = 0 to $x = 2\pi$
- (d) $y = x^2 2x 3$ and the x-axis

25. A region is bounded by $y = x^2$, y = 0, x = 1, and x = 3.

- (a) Calculate the area of the region
- (b) Find the x-coordinate of the centroid
- (c) Calculate the moment about the y-axis
- (d) Find the average value of $y = x^2$ over [1, 3]

Section F: Fundamental Theorem of Calculus

26. Use the fundamental theorem to evaluate:

- (a) $\frac{d}{dx} \int_0^x t^2 dt$
- (b) $\frac{d}{dx} \int_1^x \sin t \, dt$
- (c) $\frac{d}{dx} \int_0^{x^2} e^t dt$
- (d) $\frac{d}{dx} \int_{x^2}^{x^3} \cos t \, dt$

27. Find these derivatives:

- (a) $\frac{d}{dx} \int_0^x \sqrt{1+t^2} dt$
- (b) $\frac{d}{dx} \int_x^2 \frac{1}{t} dt$
- (c) $\frac{d}{dx} \int_{\sin x}^{\cos x} t^2 dt$
- (d) $\frac{d}{dx} \int_0^{x^2} \sin(t^2) dt$

28. Given $F(x) = \int_0^x f(t) dt$ where f is continuous:

- (a) Prove that F'(x) = f(x)
- (b) If $f(x) = x^2 + 1$, find F(x)
- (c) Verify that F'(x) = f(x) for your answer
- (d) Calculate F(2) F(1) and interpret geometrically

- 29. Solve these differential equations using antiderivatives:
 - (a) $\frac{dy}{dx} = 3x^2 + 2x 1$ with y(0) = 5
 - (b) $\frac{dy}{dx} = e^x + \sin x$ with y(0) = 1
 - (c) $\frac{d^2y}{dx^2} = 6x + 2$ with y'(0) = 1 and y(0) = 0
 - (d) $\frac{dy}{dx} = \frac{1}{x}$ with y(1) = 2
- 30. For the function $g(x) = \int_1^x \frac{1}{t} dt$:
 - (a) Find g'(x)
 - (b) Show that g(xy) = g(x) + g(y) for x, y > 0
 - (c) Prove that $g(x^n) = n \cdot g(x)$ for x > 0 and integer n
 - (d) Identify q(x) in terms of elementary functions

Section G: Volumes of Revolution

- 31. Find the volume when these curves are rotated about the x-axis:
 - (a) y = x from x = 0 to x = 2
 - (b) $y = x^2 \text{ from } x = 0 \text{ to } x = 1$
 - (c) $y = \sqrt{x}$ from x = 0 to x = 4
 - (d) $y = e^x$ from x = 0 to x = 1
- 32. Calculate volumes of revolution about the x-axis:
 - (a) y = 2x + 1 from x = 0 to x = 3
 - (b) $y = x^2 + 1$ from x = -1 to x = 1
 - (c) $y = \sin x$ from x = 0 to $x = \pi$
 - (d) $y = \frac{1}{x}$ from x = 1 to x = 2
- 33. Find volumes when rotated about the y-axis:
 - (a) $x = y^2$ from y = 0 to y = 2
 - (b) $x = \sqrt{y}$ from y = 0 to y = 4
 - (c) $x = e^y$ from y = 0 to y = 1
 - (d) $x = \ln y$ from y = 1 to y = e
- 34. Use the washer method to find volumes:
 - (a) Region between $y = x^2$ and y = 4 rotated about x-axis
 - (b) Region between y = x and $y = x^2$ rotated about x-axis
 - (c) Region between $y = e^x$ and y = 1 from x = 0 to x = 1 rotated about x-axis
 - (d) Region between $y = \sqrt{x}$ and y = x rotated about y-axis
- 35. A solid has circular cross-sections. The radius at height h is $r(h) = \sqrt{4 h^2}$ for $0 \le h \le 2$.
 - (a) Set up the integral for the volume
 - (b) Calculate the volume
 - (c) Identify the shape of the solid
 - (d) Find the surface area if this represents a hemisphere

Section H: Applications in Physics and Engineering

- 36. A particle moves with velocity $v(t) = 3t^2 6t + 2$ m/s.
 - (a) Find the displacement from t = 0 to t = 3
 - (b) Calculate the total distance traveled
 - (c) Find the position function if s(0) = 5
 - (d) Determine when the particle changes direction
 - (e) Calculate the average velocity over [0, 3]
- 37. The acceleration of an object is $a(t) = 6t 4 \text{ m/s}^2$.
 - (a) Find the velocity if v(0) = 2 m/s
 - (b) Find the position if s(0) = 0
 - (c) Calculate the displacement from t = 1 to t = 3
 - (d) Find when the object is at rest
 - (e) Determine the maximum distance from the origin
- 38. Water flows into a tank at rate R(t) = 5 + 2t liters per minute.
 - (a) Find the total volume added in the first 10 minutes
 - (b) If the tank initially contains 50 liters, find V(t)
 - (c) Calculate the average flow rate over 10 minutes
 - (d) Find when the tank contains 200 liters
 - (e) Determine the rate of change of flow rate
- 39. The force on a spring is F(x) = kx where x is displacement from equilibrium.
 - (a) Find the work done stretching the spring from x = 0 to x = a
 - (b) If k = 100 N/m, calculate work to stretch 0.5 m
 - (c) Find the potential energy stored in the spring
 - (d) Compare with gravitational potential energy mgh
- 40. The rate of heat conduction is $\frac{dQ}{dt} = -kA\frac{dT}{dx}$ (Fourier's law).
 - (a) If temperature varies as $T(x) = 100 2x^2$, find $\frac{dT}{dx}$
 - (b) Calculate the heat flux at x = 5
 - (c) Find the total heat conducted through a rod from x = 0 to x = 10
 - (d) Interpret the negative sign physically

Section I: Advanced Applications and Techniques

- 41. The center of mass of a thin rod from x = a to x = b with density $\rho(x)$ is: $\bar{x} = \frac{\int_a^b x \rho(x) dx}{\int_a^b \rho(x) dx}$
 - (a) Find the center of mass of a rod from x=0 to x=2 with density $\rho(x)=x+1$
 - (b) Calculate the total mass of the rod
 - (c) Find the center of mass if density is $\rho(x) = e^x$
 - (d) Compare with uniform density $\rho(x) = 1$
- 42. The moment of inertia about the x-axis is $I_x = \int y^2 dm$ where $dm = \rho dA$.

- (a) Find I_x for the region under $y = x^2$ from x = 0 to x = 1 with uniform density
- (b) Calculate the radius of gyration $r_g = \sqrt{\frac{I_x}{M}}$
- (c) Find the moment of inertia about the y-axis
- (d) Compare I_x and I_y and explain physically
- 43. Arc length of a curve y = f(x) from x = a to x = b is: $L = \int_a^b \sqrt{1 + (f'(x))^2} dx$
 - (a) Find the arc length of $y = x^2$ from x = 0 to x = 1
 - (b) Calculate the arc length of $y = \ln x$ from x = 1 to x = e
 - (c) Find the perimeter of one arch of $y = \sin x$
 - (d) Derive the formula for arc length using differential geometry
- 44. Surface area of revolution about x-axis is: $S = 2\pi \int_a^b y \sqrt{1 + (y')^2} dx$
 - (a) Find the surface area when y = x from x = 0 to x = 1 is rotated
 - (b) Calculate surface area for $y = \sqrt{x}$ from x = 0 to x = 4
 - (c) Find the surface area of a sphere of radius r
 - (d) Compare with the volume formula for verification
- 45. Economic applications of integration:
 - (a) If marginal cost is MC(x) = 2x + 3, find total cost function given fixed costs of £100
 - (b) Calculate consumer surplus if demand is $p = 20 x^2$ and price is £4
 - (c) Find producer surplus for supply curve $p = x^2 + 1$ at equilibrium price £5
 - (d) Determine the total economic surplus at market equilibrium
- 46. Probability density functions satisfy $\int_{-\infty}^{\infty} f(x) dx = 1$.
 - (a) Find the constant k so that $f(x) = kx^2$ is a PDF on [0, 2]
 - (b) Calculate $P(X \leq 1)$ for this distribution
 - (c) Find the mean $\mu = \int x f(x) dx$
 - (d) Calculate the variance $\sigma^2 = \int (x \mu)^2 f(x) dx$
- 47. Design an integration problem modeling a real-world scenario:
 - (a) Define your physical or geometric setup clearly
 - (b) Set up the appropriate integral(s)
 - (c) Evaluate the integral(s) analytically
 - (d) Interpret your results in the original context
 - (e) Discuss limitations and assumptions of your model
- 48. Numerical integration and error analysis:
 - (a) Use the trapezoidal rule with n=4 to approximate $\int_0^1 e^{x^2} dx$
 - (b) Apply Simpson's rule with n = 4 to the same integral
 - (c) Compare your approximations and estimate the error
 - (d) Explain why this integral cannot be evaluated analytically
 - (e) Research applications where numerical integration is essential

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$